-
LLM
【美国】建筑劳动力管理平台开发商 Lumber 获得 550 万美元的种子轮融资
总部位于美国的建筑劳动力管理平台开发商 Lumber 获得了 550 万美元的种子轮融资。
本轮融资由 Carbide Ventures 领投,Escape Velocity、8VC、Sure Ventures、Converge VC 和 Firsthand Alliance 以及个人投资者跟投。
公司打算利用这笔资金扩大运营和业务范围。
在创始人兼首席执行官 Shreesha Ramdas 的领导下,Lumber 公司为中小型建筑承包商提供了一个集成的端到端 SaaS 劳动力管理平台,该平台由专门构建的 LLM 支持。该平台统一了薪资、时间跟踪、合规性、应付账款和入职工作流程,提供生产力解决方案,以确保合规性、管理劳动力成本、简化薪资流程并做出明智的财务决策。
总承包商、分包商和专业承包商现在都可以使用该平台的综合时间跟踪和薪资应用程序。
关于Lumber
Lumber 是专为承包商、分包商和专业承包商构建的建筑劳动力管理平台。
文章来源:finsmes
-
LLM
大咖谈:生成式AI在人力资源中的作用日益重要,谈HR不同领域的应用场景
编者注:本文Josh Bersin深入探讨了生成性AI(Generative AI)在人力资源(HR)领域的变革性作用。谈到生成性AI不仅能够整合和分析分散在多个系统中的大量员工数据,还能帮助HR团队更高效地解决招聘、员工体验、培训和合规等多个方面的问题。生成性AI的应用场景包括人才智能、员工体验应用、员工培训和合规应用等。这些应用不仅能提高HR团队的工作效率,还能为员工提供更个性化的体验。推荐HR管理者阅读了解,关注HRTech,了解全球最新HR科技动态。
人力资源是一个综合运营职能
让我们提醒自己,人力资源部门与财务、IT 和其他内部职能部门一样,是一个设计、支持和集成职能部门。人力资源部门与企业合作,处理无数复杂的问题:招聘、入职、培训、领导力发展、绩效管理、薪酬、奖励、福利、混合工作、组织设计、多元化战略、文化等等。在我们所谓的系统人力资源出现之前,大多数这些操作功能都是独立完成的。
如今,公司面临着竞争激烈的劳动力市场、高流动率和劳动力压力,以及重新培训、提高技能和明智地内部人员调动的需要。多样性和包容性、文化和领导力发展等问题仍然至关重要,人力资源团队还担心员工体验、生产力和内部效率。
HR 内部的数据遍布各处。一般大公司拥有超过 80 个面向员工的系统,每个系统都存储大量重要数据以帮助管理自己的区域。当业务领导者或高管想要做出改变、查看业务场景或修复表现不佳的团队时,他们需要将所有这些数据集中在一个集成位置。人工智能有望将这个梦想变为现实(更多内容见下文)。
当人力资源团队制定新的计划和解决方案时,我们还面临着不堪重负的劳动力问题。员工大部分都精疲力竭(87% 的人认为他们正在满负荷运转),因此我们必须简化工作、减少系统数量,并节省人们在管理职能上的时间(使他们能够在“最高许可范围内”运作) 。这意味着人力资源团队不断处理扩大服务数量、缩小服务范围并使其更易于使用的问题。人工智能AI对此有所帮助。
最后,人力资源团队正在转变为创造者、开发者和顾问。正如我们的系统人力资源研究指出的那样,人力资源的未来是更少的“支持代理”,更多的“顾问、产品经理、设计师和顾问”。这意味着越来越多的人力资源团队正在“构建事物”和“分析事物”,这本质上是生成人工智能所做的核心部分。
因此,从某种意义上说,生成式人工智能是解决人力资源团队面临的几乎所有挑战的完美新解决方案。
我们将如何实现这一目标:真实案例
在我们与数十家公司和HR科技供应商交谈时,让我总结一下我们看到的一些大型、高投资回报率的实际案例。
1/ 用于招聘、流动、发展、薪酬公平的人才情报
人才情报现已成为现实。公司可以使用基于 LLM 的系统(Eightfold、Gloat、Beamery、Seekout、Phenom、Skyhive)来识别员工的数百个特征(即技能),使公司能够智能地寻找候选人、决定谁已准备好晋升、调动人员寻找新的机会(人才市场),并确定薪酬不平等。
我们已经研究了这个领域好几年了,现在许多供应商都可以“现成”使用,并且使用来自 Lightcast 等提供商的数据,公司可以相对轻松地开始识别能力差距,研究外部市场的趋势,并使用人工智能为许多人力资源实践构建战略和运营解决方案。——我相信这个市场还很年轻,最终将颠覆许多核心 HCM 参与者。
在招聘中,现在有一些AI插件可以生成职位描述,针对不同的角色进行调整,创建个性化的候选人电子邮件,并丰富您自己的简历。这些工具正变得越来越智能:它们现在可以个性化招聘流程的每个部分,从而节省招聘人员的外展和写作时间。例如,我刚刚看到不少最新的人工智能职位描述生成器,它可以让你根据技能、技术和许多其他因素调整描述。
2/ 员工体验应用程序(入职、工作过渡、管理)
第二个增长空间是“智能员工聊天机器人”,它将文档、支持材料和交易系统整合到一个易于使用的体验中。我们的一些客户正在尝试这一点,我们自己的 JBC HR Copilot 为人力资源专业人员本身提供了这种类型的解决方案。这些实际上是企业应用程序,公司将自己的内容放在一起,制定数据安全策略(我们不希望每个员工看到每个文档或流程),然后使用“编排”工具将聊天机器人连接到企业系统。
IBM Watson Orchestrate 就是为此而设计的(SAP 现在正在使用),并且平台供应商和 HCM 提供商将提供许多此类工具。Workday Assistant 是第一代尝试 - 一旦您将各种人力资源系统的知识与流程文档结合起来,聊天机器人就可以最终取代我们所有的员工门户。
到目前为止,我们发现这些应该首先关注狭窄的用例,然后再进行扩展。例如,一家大型连锁酒店刚刚构建了一个聊天机器人,旨在帮助前台工作人员准确了解如何为高净值客户提供服务。它连接到预订系统,帮助员工了解如何为该客户定制服务。想象一下像这样的入职工具、领导层过渡系统等。
每个 EX 供应商都希望参与其中。Firstup 等提供商使用人工智能为每个人单独定制员工通信。这将成为我们用于许多员工体验应用程序的一组核心功能。
3/ 员工培训和合规应用程序
价值 3500 亿美元的员工培训行业迫切需要生成式 AI。我们已经看到了一些工具,可以从文档生成培训,自动创建测验,并利用现有内容并将其变成“教学助手”。就在昨天,我与一位客户交谈,他刚刚与供应商建立了一个新的领导力发展计划。我们讨论了将这些内容放入我们的 Copilot 中,以便通过经理的对话界面“按需”提供。一旦有了人工智能平台,这并不是一个困难的项目。
但还有更多。Cornerstone、Docebo、Degreed 等公司现在正在使用 AI 来智能推荐内容(基于人才智能,而不仅仅是点击流),根据角色、团队、位置和员工活动生成和推荐微学习,甚至将 AI 用作游戏“提示”员工了解更多信息。
举个例子:我们刚刚在公司的培训学院启动了一个微型学习项目,向人力资源人员传授人工智能知识。例如,该课程由一系列互动问题、小笔记和手机上的互动组成,可以导入到我们的副驾驶中,并在有人提问时提供。这些并不是现成的解决方案,但我们已经很接近了。
请记住,学习与开发团队的大部分工作都是围绕内容创建展开的。这些构建角色、图像、场景和视频的新一代人工智能应用程序将被 L&D 团队广泛使用。我刚刚找到了一个工具,可以拍摄长视频(即讲师指导的课程)并快速找到“最有趣”或“最密集”的内容来创建迷你片段。想象一下,您将不得不拍摄长视频并将其转化为章节、点播学习以及新知识学习的促销活动。
4/ 员工发展和成长应用程序
接下来是帮助员工发展职业生涯的大量新工具和平台领域。感谢人才智能平台,我们现在拥有由人工智能(而不是你的老板)生成的“职业道路”。这些系统会考察您的技能和经验,并(以图形方式)向您展示您拥有的所有成长选项,所有这些都基于数百万人的经验。
例如,您是否知道从事分析工作的营销经理可以进入数据科学、网络安全甚至财务分析领域?或者,一个在医院做小时工“交通支持”的人可以加入职业道路,成为一名 X 射线技术人员或临床护士?
这些路径都是由人工智能揭示和解释的,这些新系统准确地向你展示了你需要学习什么、你必须获得什么认证,甚至你可以和谁谈论这条路径。实际上,我们正在为人力资源专业人员开发此类解决方案(即将推出),您会惊讶于这些工具的帮助之大。
为什么人工智能如此重要?因为这从根本上来说是一个大数据问题。我不可能猜测一个人在我们公司可能拥有的所有职业选择,但如果我将他们的个人资料和历史记录插入八重职业导航器或其他系统,我们都可以看到许多我们从未考虑过的选择。
想想这将如何帮助没有学位的员工在职业生涯中取得进步。不再需要在网站上逛来猜去哪里申请工作——这些职业导航系统将改变许多人的生活。
5/ 绩效管理和运营改进
人工智能应该用于绩效管理吗?嗯,我不希望这些系统写绩效评估,但是,是的,它们会有很大帮助。考虑一下我们每个公司都遇到的典型问题:一个团队、一个工作组或一个个人表现不佳。这个群体或个人的数量落后,他们的项目迟到,或者他们的质量不合格。我们是否要等待经理找出问题所在并让他们弄清楚该怎么做?
这就是今天的运作方式:每个经理都必须猜测、弄清楚并决定对绩效不佳的个人、团队或项目“做什么”。为什么不让人工智能为我们做一些事情呢?例如,我们已经看到一些应用程序可以向您展示公司绩效的综合“视图”。从很多方面来说,这都是一个数据问题。
例如,如果我们发现超过一定规模的项目团队根本无法完成工作怎么办?如果我们查看团队的技能构成并发现缺少一项重要技能怎么办?也许终身教职是问题所在(顺便说一句,这通常是问题)。也许多样性阻碍了团队的发展。
虽然直线经理可能不会进行此类分析,但我可以向您保证,人力资源顾问很乐意在这里提供帮助。这些更广泛的组织设计和绩效项目无处不在,一旦我们在人工智能系统中拥有了所有数据,我们就可以简单地向它提问。
我问Google 的 Bard,“请比较一下雪佛龙和埃克森美孚的财务增长、回报和利润率。” 大约十秒钟就完成了相当不错的工作。想象一下,如果您在自己的公司中跨团队这样做会怎样?一旦我们将内部数据输入正确的人工智能系统,这将成为常规且常见的事情。
6/ 保留、混合工作、幸福感、敬业度分析
这引导我进入最后一个重要领域:研究、分析和提高员工保留率、福祉和敬业度。
我接触过的每家公司现在都在处理员工倦怠、福祉和其他敬业度问题。几十年来,我们依靠调查和各种基准来试图弄清楚该怎么做。是的,良好的反馈系统可以为我们提供大量有帮助的信息。
但是,如果我们只是将这些数据放入我们的大型人工智能平台并询问一些问题会怎样?“影响销售部门人员流动的最重要因素是什么?” 可能是经理。这可能是一种补偿。可能是终身教职。可能是别的东西。
是的,我们总是可以使用调查、市政厅和其他倾听方法来做到这一点。但如果我们只看数据呢?我们已经多次介绍过美国银行学院的故事,讲述的是一家公司通过详细分析数据“发现”其人才问题的故事。例如,他们发现银行余额与分行员工的任期密切相关。终身任职是由许多其他因素驱动的:人们在职业生涯中如何被聘用、入职和支持。通过进行该分析,他们能够显着提高业务绩效和保留率。他们的敬业度调查永远不会指出这一点。
你是如何开始的?
这给我们留下了一个大问题:如何开始?让我分享一下我们学到的东西。
首先,与其“追逐技术”,不如“爱上问题”。
换句话说,您想关注什么问题?是员工入职吗?人力资源自助服务?小时工排班和轮班管理?这意味着让您的团队聚集在一起确定投资的优先顺序,因为构建基于人工智能的解决方案并不像您想象的那么简单。
其次,一旦您决定从哪里开始,就该让 IT 团队参与进来。这些用例中的每一个都会变成一系列数据质量、数据管理、数据字典、然后是安全、业务规则和机密性的问题。
请记住,“将信息扔进法学硕士”可能听起来很有趣,但即使它有效,你也只是让各种各样的人访问他们可能不需要、不想要、甚至不被允许看到的信息。因此,聊天机器人的实施意味着同时关注用户体验、数据管理、搜索和编排。
我们自己的副驾驶工作已经给了我们这样的经验。一旦你收集到数据(在大多数情况下,并不清楚谁拥有什么),你必须开始测试 Gen AI 用例,定义安全规则,并决定你想要什么(如果有)后端编排。这些并不像“将一堆电子表格扔进 OpenAI 并开始提出问题”那么令人兴奋,但这正是真正的解决方案需要做的。
第三,你必须意识到,人工智能系统与交易系统不同,它负责照顾和喂养。“及时工程”意味着调整系统以正确回答问题,找到数据或文档中的差距,并不断努力保持用户体验简单。一旦聊天机器人或其他系统投入运行,我可以保证将会需要更多(和新的)数据。
从很多方面来说,新的人工智能系统就像一个新生婴儿。它必须学习如何走路、说话、举止以及避免麻烦。在您真正使用之前,现成的工具不会执行此操作,因此您需要 IT 的帮助来确保您的系统在增长时具有可持续性和可支持性。
人工智能将如何影响人力资源本身?
还有一个关于你的角色的大问题。这些新系统会让你被淘汰吗?
答案显然是否定的。这些智能系统是数据饥渴的恶魔。一旦构建它们并添加正确的信息,您将成为分析师、聊天机器人培训师、产品经理和设计师。查找信息和分析信息的许多平凡工作可能会消失,但了解要使用哪些信息的更高级别的工作将保留下来。随着新应用程序的到来,将会出现许多新的工作来负责人工智能系统、调整它们并不断改进它们。
让我向您告别:尽管这个领域令人兴奋不已,但人力资源中的人工智能实施仍然是技术项目。它们与任何交易系统都存在许多相同的问题和挑战,并且系统本身一直在“学习”。
我可以向您保证,整个领域既被过度炒作又被低估。如果您从小事做起,亲自动手,并带上您的 IT 团队,那么您将开始在我讨论的任何领域看到令人震惊的商业利益。
-
LLM
【印度】人工智能教育平台提供商Shaktimaan.ai获得200万美元种子轮融资
总部位于印度的人工智能教育平台提供商 Shaktimaan.ai 在种子轮融资中筹集了 200 万美元。
支持者包括 Fundersclub、GoodWater Capital、Y Combinator 和 Jar 的创始人等。
Shaktimaan.ai 打算利用这笔资金增强平台的功能和适应性,并推进专门为各种教育用例训练的语言模型(LLM)。
Shaktimaan.ai 由Vimal Singh Rathore和Aseem Gupta于 2021 年共同创立,从 UPSC 考试开始,让学生在一个有纪律的生态系统中获得知识和个性化指导。目前,它可在数秒内提供实时解疑、个性化反馈和手写答案评估。
Shaktimaan.ai 是 Y Combinator 2023 年冬季团队的一员。
关于Shaktimaan.ai
Shaktimaan.ai是印度第一个个人导师和学科诱导学习生态系统。
文章来源:finsmes
-
LLM
【重磅必读】Josh Bersin认为AI加持的下一代的HR软件时代已经到来!以全球HR科技玩家为例-HR科技达人必读(多图)
人力资源软件构成了世界上最大的技术市场之一。据我们估计,这是一个价值 2500 亿美元的市场,包括薪资系统、核心人力资源平台、招聘、培训、福利和数百种其他应用程序。在过去的五年里,随着公司适应混合工作和大流行,市场出现了爆炸式增长。就在上周, Workday 宣布其订阅收入增长率为 20.1%,目前每季度达到 13 亿美元。
在过去的二十年里,这些系统发生了根本性的变化。在 1980 年代和 90 年代,这些工具主要是为薪资管理员、人力资源经理和 IT 员工设计的后台工具。从 2000 年代中期开始,这些系统全部迁移到云端,向员工开放接口。而今天,当我们都通过手机与数十种应用程序进行交互时,人力资源平台已经越界成为“工作”工具。
我们在工作中所做的一切,从安排会议到分析电子表格,现在都与人力资源系统有关。您的目标、反馈、团队互动、财务结果、招聘、团队领导和福利管理都是人力资源技术堆栈的一部分。随着我们大量使用这些工具(平均每个大公司有80 个这样的应用程序),它们开始融合在一起。
Workday、SuccessFactors、ADP 和 Oracle 等大型 HCM 参与者现在拥有合作伙伴生态系统来集成和简化所有这些工具。云架构的采用让这一切变得简单:一旦这些公司使用 API 开放了他们的应用程序,他们每个人都决定成为一个“平台”,而不仅仅是一个应用程序。甚至 ServiceNow 和微软 (Viva) 也参与其中。
多年来,我一直注意到这些系统的老化和遗留问题。虽然 Workday 和 SuccessFactors 等现代系统具有高度适应性,但它们的架构正在老化。Workday 成立于 2005 年,SuccessFactors 于 2001 年首次推出。虽然这些供应商以多种方式对其数据结构和架构进行了现代化和更新,但他们的核心系统仍然相当僵硬和脆弱。一旦您“实施”了这些系统,您就会遇到许多工作流程和层次结构决策,迫使公司随着公司的发展和变化而定期“重新实施”它们。
你品一下:根据 JPM Chase 的研究,超过75% 的公司在 15 年内倒闭或被收购。因此,您购买的任何 HCM 系统都必须适应性强、灵活且易于更改。没有人在这方面做得很好。
一个更棘手的问题是收集和分析数据。由于大多数公司都有许多系统(数十个招聘、培训、合规、福利、调查、福利和薪资系统),几乎不可能获得所有员工及其所有各种人力资源数据元素(培训、工作历史)的单一视图、绩效评级、反馈、薪酬、福利)所以 IT 部门必须做很多工作才能将这些整合在一起。像 Visier 这样的新平台彻底改变了这种新的“系统分析”解决方案,但大多数公司仍在苦苦挣扎。
在过去几个月中,我曾与麦当劳、GE等许多公司会面,他们都在处理这些数据问题。麦当劳希望在数十个工资系统中获得所有员工(和承包商)的单一视图。GE则正在将公司分割为三个独立的业务。在这两种情况下,他们认为他们需要对其人力资源管理平台进行全面的“重新实施”,这将耗费数千万美元并需要几年时间。
还有更多:我们如何获得综合数据(我们称之为“系统分析”)以综合方式查看人员流动、保留驱动因素、薪酬公平、内部流动性和技能?这些较新的人力资源计划需要以全新的眼光看待员工队伍,跨系统集成更多数据。顺便说一句,请记住,全球近三分之一的劳动力都是承包商,因此他们的数据在这些系统中几乎根本无法识别。
新架构如何使这更容易?
好吧,虽然这个市场的发展需要时间,但让我提出一些重要的建议。人工智能,媒体和投资界的宠儿,可能最终会带来我们需要的“新架构”。虽然还没有供应商构建完整的以 AI 为中心的 HCM 系统,但我相信它很可能会到来。
让我给你叨叨:
正如我在我们关于 AI 架构的新白皮书 中所讨论的那样,AI 解决方案分为三个系列:那些“添加了 AI”的,那些在他们的平台中构建“AI 功能”的,以及那些“建立在人工智能之上。”
正如我们在论文中详述的那样,第三类平台以 LLM 和神经网络为核心构建。它们不是将交易数据存储在传统系统中,然后添加机器学习来改善体验,而是首先建立在人工智能之上。在与这些公司的技术领导者多次讨论之后,我相信这可能就是未来。
考虑 LLM(神经网络)的真正工作原理。这些系统是“贪婪的数据分析器”,查看标记(单词)或数字,并以深刻而迷人的方式发现它们之间的关系。虽然我们从未真正确切地知道为什么一个人在工作中表现优于另一个人,但人工智能将能够为我们提供我们以前从未见过的线索。现在许多商业供应商将 LLM 作为产品和网络服务出售(Google、Microsoft、OpenAI、Nvidia、Anthropic、Amazon、Meta),这些平台越来越容易使用。
您可能会说,“没那么简单”——现有的交易系统存储了数百个数据元素,如今这些数据元素具有复杂的工作流管理、安全性、用户界面和完整性检查。我当然同意:这些 HCM 和人才管理系统对每家公司都很重要和必不可少。
但这些应用程序的问题在于它们不灵活。随着公司的发展和变化,系统会随着时间的推移变得越来越“复杂”和“有缺陷”。这就是为什么像 Microsoft、Allianz、Nestle 和其他公司这样的大公司拥有庞大的 IT 团队,专注于流程协调、数据完整性和架构以保持同步。
从某种意义上说,这就是 ServiceNow 发展如此之快的原因。为了颠覆这个庞大的市场,Bill McDermott 和他的团队将他们的工作流引擎定位为“平台中的平台”,能够神奇地创建“跨越”这些后端系统的业务规则和应用程序,将遗留设计挑战转移到新层。正如他们的成长所证明的那样,公司迫切需要这个新的抽象层。
但这不正是大规模人工智能系统真正要做的吗?绝对没错。因此,我们可以期待基于神经网络和大型语言模型构建的 AI 核心系统缓慢但肯定会取代这些遗留系统。核心 HCM 供应商可能会走得很慢,但在大多数情况下,他们看到了这一点,所以他们正在尽可能快地前进。
例如,SuccessFactors 正在构建一个基于图形数据库的新 HXM 图形系统,旨在模拟我们大多数人正在迅速成为的高度去中心化、敏捷的公司。由于与 SAP 的许多集成,他们不得不缓慢行动,但他们清楚地看到了未来,并且他们现在正在试验它。他们已经将 Copilots 直接构建到应用程序中,为招聘人员、人力资源人员和其他人添加了生成人工智能。
我在 Workday 与机器学习负责人进行了长时间的交谈,他们也看到了这一点。虽然 Workday 认为他们的架构是合理的,但他们将 AI 模型视为 Workday 架构的重要扩展。因此,他们的工程师在构建新功能时会研究许多可能的 LLM 和 AI 模型,以尝试逐步增加其庞大应用程序的价值。
他们提到的第一个用例是能够“忽略”高度信任的员工的某些安全或工作流规则。因此,根据用户的历史记录、使用模式和公司历史,Workday UI 对于每个用户来说都是不同的。
虽然这些都是令人兴奋的努力和创新,但我认为它会走得更远。当我与 Eightfold、Gloat、Seekout 或其他“以 AI 为核心”的供应商交谈时,他们看到了更加广阔的未来。为什么人力资源系统不能预测和推荐我们所有的学习、发展活动、工作调动,甚至日常活动?如果您考虑 Microsoft Graph 中的智能,再加上由 Eightfold、Gloat、Seekout 和其他公司管理的海量数据集,您可以想象这些系统比 Workday 现在所做的要多得多。
然后我们看看像 Cornerstone 和 ServiceNow 这样的专业供应商。Cornerstone 的新 AI-fabric 旨在查看 7,000 名客户的所有学习和发展活动,并为您的公司提供有关内容、流动性、技能等方面的规范性建议。虽然他们的实施还很新,但我最近看到的演示已经开始实现这一愿景。Cornerstone 客户可以看到他们所在行业的其他人“推荐”了哪些行业技能、内容、职业和流动性,类似于 Eightfold 在招聘和人才管理方面的做法。
ServiceNow 也将此视为颠覆者。在听完 Bill McDermott 和他的团队描述他们的未来后,他们希望成为“企业的 AI 平台”,他们最近宣布的员工发展和成长(通过收购 Hitch Works)清楚地表明了他们的目标。他们希望成为您的“企业级智能平台”,最终以全新的平台架构取代 HCM 系统。
与所有这些主要的架构转变(迁移到云、迁移到移动设备)一样,迁移到 AI 一开始似乎令人困惑。大型供应商将缓慢而渐进地移动,而新的初创公司将以闪电般的速度移动。但有些人可能会破坏。我对Palantir 推出的基于 LLM 的业务系统特别感兴趣。它本质上是一个围绕专门构建的大型语言模型设计的 ERP(财务系统)。
我最近与 Eightfold 的联合创始人 Ashutosh Garg 讨论了这一趋势。他和我一样,也相信这种以人工智能为中心的架构会随着时间的推移而胜出。他们的系统可以集成和聚合几乎所有数据,因为它的架构非常开放。(传统的 ERP 系统并非为此而设计。)他认为“交易完整性”将成为 AI 核心的附加组件,本质上与现有供应商的方法相反。
该架构将走向何方
虽然我从不试图预测聪明先驱的创新,但我看到了广阔的新未来。五年前,当我们第一次描述“人才智能”时,我们本质上是在指出需要(和机会)使用 AI 来了解工作、角色、技能和员工在比贵公司现有员工大得多的数据集中的适应性. 随着时间的推移,同样的想法将接管所有 HCM 应用程序,仅仅是因为 LLM 和 GPU 现在使它成为可能。
在我看来,企业管理的大部分要素都归结为人的判断。雇用谁、提拔谁以及调任新职位都是我们根据个人判断做出的艰难决定。当您添加其他决策时,例如让团队有多大、如何提高生产力以及如何更快地培养新技能——甚至需要更多的“猜测”。然后还有诸如“给某人多少薪水”或“谁应该担任总经理”之类的问题,这些问题既棘手又重要。
这是供应商提供的 LLM 还是您自己的?两种选择都可能可用。小型公司将使用供应商提供的现成 LLM;大公司将在受保护的、完全安全的环境中使用内部数据来运行自己的系统。
如果我们使用 LLM 来帮助做出这些人才和人力资源决策,我们的公司将会运行得更好。是的,人工智能永远不会完全取代人类的判断。但是想象一下,如果你能看到给定决定的统计证据然后应用判断?我知道这将极大地改善我们的决策。
这些生成式 AI 架构确实是下一件大事。Nvidia 的联合创始人兼总裁黄仁勋称 LLM 为“我们这一代最大的计算机行业转型”。我必须同意。
我们新的 AI 白皮书描述了这些“基于 AI 的”决策的许多示例,您会惊讶于它们的强大功能。虽然我无法预测这种转变会以多快的速度发生,但我相信我们现在已经拥有了我们一直在等待的“下一代”HCM 架构。
-
LLM
【资讯】Beamery宣布推出TalentGPT,这是世界上第一个用于人力资源的生成式AI
人才生命周期管理领域的全球领导者Beamery近期宣布推出 TalentGPT,这是世界上第一个用于人力资源技术的生成人工智能,可为经理、招聘人员、候选人和员工提供个性化体验。借助 TalentGPT,Beamery 将通过生成式 AI 改变每一次人才招聘和人才管理体验。
TalentGPT是Beamery在过去三年中开发的专有AI技术。它建立在Beamery人才图谱之上,跟踪有关候选人,公司,技能和工作的超过17亿个数据点, 并使用来自预先训练的LLM的生成AI来增强Beamery屡获殊荣和偏见审计的AI模型。
TalentGPT将提供一个单一的助手,利用Beamery专有的AI,以及OpenAI的GPT-4和其他领先的大型语言模型(LLM)。这种独特的组合使TalentGPT能够提供给用户深度个性化的见解和建议,并实时生成适应不断变化的客户信息和内容。
例如,TalentGPT可以生成新的职位描述,它不仅会生成要发送的电子邮件模板,还会将它们发送给雇主试图接触的确切候选人。它不仅会为员工提供职业建议,还会根据他们现有的技能以及他们需要改进的地方来指导他们下一次的晋升。
Beamery的联合创始人兼总裁Sultan Saidov说:“我们不只是将TalentGPT整合到我们所有的产品中, 这项新技术使我们能够从根本上简化和重新设计我们所有的用户体验。很难夸大人工智能技术的这些进步在多大程度上改善了我们可以为用户提供的交互,以及我们可以在完成复杂任务时节省了多少时间。”
作为第一家对其人工智能模型进行独立审计的人力资源技术公司,也是唯一一家允许候选人围绕组织在其数据上使用人工智能设置偏好的公司,Beamery在人工智能方面的合规性和偏见管理方面一直处于市场领先地位。在这些经过偏差审计的AI控制中部署多用途LLM,使Beamery能够降低与使用ChatGPT和其他模型相关的风险。
文章来源:Hrtechcube.com
扫一扫 加微信
hrtechchina