• Workforce Analytics
    HR Analytics, People Analytics & Workforce Analytics有什么区别?为什么重要! HR Analytics, People Analytics & Workforce Analytics 我们经常看到,有啥区别呢? 技术、大数据和分析已经成为战略决策工具箱中的重要项目。其中一个原因是,在过去的30年里,商业价值的驱动因素已经发生了巨大的变化。在过去,商业价值是有形的。想想仓库里的股票,银行里的钱,房地产,等等。而且它们在资产负债表上都有记载。 如今的商业价值也可以与拥有一支能够颠覆市场并带来彻底创新的高素质劳动力有关。想想亚马逊的例子就知道了。他们的估值正在飙升,但这是因为他们的仓库业务,还是其优秀劳动力的真正价值? 公司正在积极寻找好的措施来获取这种劳动力价值。已经有一些倡议在资产负债表上将劳动力作为一种无形资产进行核算。当公司更加意识到他们劳动力的价值和潜力时,他们正在寻找衡量标准和方法,以最大限度地提高效益,优化业务成果。这正是人员分析的意义所在,也是企业积极探索如何实施和接受这种分析的原因。 HR Analytics, People Analytics & Workforce Analytics有什么区别? HR Analytics和People Analytics之间的区别是什么?从一开始,我们就必须澄清对HR Analytics, People Analytics & Workforce Analytics这些术语的误解。 在实践中,这些术语经常被交替使用,然而,它们是不一样的。HR Analytic捕捉和衡量人力资源团队本身的运作--例如,分析KPI(关键绩效指标),如员工流失率、招聘时间等。这样的分析只与人力资源团队有关,他们可以为之负责。 考虑到这一点,我们有必要了解People Analytics的无限范围。真正的People Analytics旨在涵盖人力资源、整个劳动力数据和客户洞察力。People Analytics灌输了测量和分析所有这些信息的方法,并将其编织在一起以改善决策和业务绩效。 然而,重要的是要理解Workforce Analytics包括整个工人群体(不仅仅是全职员工),并允许未来包括人工智能和机器人,这些都有可能取代一个组织内的现有工作。因此,在制定整体的劳动力战略时,劳动力分析更具有描述性。 管理方面的含义:如何利用People Analytics来实现业务成果 德勤(2018)报告称,人力资本分析People Analytics不仅可以帮助组织理解不断变化的工作场所,还可以提供洞察力来推动客户行为和参与。此外,CIPD(2018)最近的一项调查证实,使用人员数据可以改善业务成果。然而,重要的是要明白,实现People Analytics的一个关键障碍是缺乏任何形式的People Analytics战略--更不用说一个与业务战略相一致的连贯战略。 为了使企业在People Analytics方面获得成功,重要的是要有一个深思熟虑的战略,关注对整个企业真正重要的东西;这最终应该与人员的行动和行为相一致。因此,People Analytics不仅能使企业衡量和跟踪与业务战略有关的进展,而且还能协助人力资源部门通过规定未来的行动来管理整个人员战略,最终达到业务战略目标。 你觉得呢?一起来聊聊~  
    Workforce Analytics
    2021年04月27日
  • Workforce Analytics
    英文学习:Workforce Analytics: what employee data can tell us now 周末英文学习 Workforce analytics—or analysing employee data to solve business problems—isn’t new, but it’s earning more attention than ever. This thanks to a stream of technology tools promising to shed light on how employee performance can improve business outcomes, coupled with mounting pressure on HR units to play a strategic role in overall business planning. Champions of workforce analytics say analysing data taken from HR systems (e.g., payroll, engagement surveys, talent suites) and business operations reveals insight that helps companies raise the quality of new hires, build high-performing sales teams, predict future staffing needs, implement more effective training solutions and drive up customer satisfaction rates, among other things. Skeptics point out that the benefit of the approach is limited by the amount and quality of the data. Both sides agree workforce analytics (also referred to as “HR analytics” or “people analytics”) has the potential to offer great strategic value even though widespread adoption still has a way to go. The 2018 Deloitte Global Human Capital Trends report, for example, which was based on a survey of 11,000 business leaders globally, showed that 85 percent of companies believe people analytics is important, but only 42 percent said they are ready to address it. Workforce Analytics in Practice The following are examples of how this technology is being applied show the upside of data-driven decision making. Crunchr, an Amsterdam-based startup, offers a tool it says measures the preferences of employees and applicants, which in turn enables companies to attract and keep the right employees. Using gamification, it asks users 16 questions about what they value most in their workplace, covering areas such as salary, benefits, career growth opportunities and job security. The surveys are anonymous, but the tool also collects data such as academic background, experience and gender. The results rank the preferences of employee groups and sub-groups. “Understanding what these preferences are helps companies design an employee value proposition where money is spent wisely,” explains Dirk Jonker, Crunchr founder and managing director. For instance, a company might offer a lower-than-average salary but include higher-than average training benefits if that is shown to matter more to a candidate. Another Crunchr tool that tracks high-potential employees also predicts flight risks, says Jonker, giving companies a chance to intervene before an employee jumps ship. OLX Group, an online classifieds operating company belonging to Naspers, is experimenting with the tool to stem flight risks among key product and technology employees. It identified two flight risk markers: reaching the 12-month employment mark and working in a unit with below-average aggregate employee satisfaction levels. When these employees get flagged in the system, the company checks in to assess their engagement level, says Brad Porteus, OLX Group CHRO. “In a perfect world, great line managers would do this instinctively, but with data and insights, we are able to be more targeted in our outreach, especially to ensure that individuals don’t fall unexpectedly through the cracks.” Workforce analytics providers say their technology also addresses the thorny issue of gender pay gap by comparing salary, employee and performance data to exposewage discrepancies. Beyond traditional HR areas, people analytics has been deployed to improve customer satisfaction and sales. McKinsey describes in a case study how its software helped a large restaurant chain pinpoint ways in which staff performance affects these levels. It collected and analysed front-line employee data in three areas: personality traits, day-to-day management practices, and behaviour and interactions on the job. One surprising insight was that financial incentives were less effective than career development opportunities in boosting employee motivation. Changes here and in other areas have driven up customer satisfaction, revenue by outlet and speed of service. The Limits of People Analytics Those cautious about workforce analytics point to its limitations. For one thing, data analysis works best with large data sets, yet companies have limited amounts of information on employees. Jonker admits that “advanced questions” companies want answers for, such as “can you predict which of these candidates will make the best salesperson?” simply cannot be answered with the data they currently have. There are also restrictions on how much data companies can collect beyond what’s gathered internally—EU’s tighter privacy laws prevent employers from looking at social media profiles without the owner’s consent. Employee data cannot be legally moved or examined across national borders in some cases. Data quality matters, too. “You can only apply statistical analysis when you have a large number of homogenous units” (like sales teams that do the exact same kinds of work), argues Alec Levenson, senior research scientist at the Center for Effective Organizations at the University of Southern California and author of “Strategic Analytics: Advancing Strategy Execution and Organizational Effectiveness.” For data to be meaningful, it must be “cleaned” so that, for instance, job titles or salaries in different currencies are consistently standardized across data sets. That’s a feat in itself. “For OLX Group, with nearly 5,000 people working in 25 unique countries, to get even basic reporting has been more challenging than meets the eye,” says Porteus. More broadly, most companies fail to do data analysis across decision-making centres—business operations, finance and HR—says Levenson, which diminishes the value of HR insights into company strategy. “Even in really big companies, the number of times it happens is astonishingly low. Decisions get compartmentalised.” Starting Simple Currently, investment in HR analytics is concentrated among large multinationals that have both the data and the skills to extract value from it. Smaller companies aren’t prioritising it, Levenson comments. But most organisations can begin extracting value with people analytics in simple but high-impact areas, says Jonker. He suggests companies look at failed starters (employees who leave within 12 months after hire). By analysing data from these employees and the managers who hired and supervised them, a company gains insight on which managers may need coaching for making hiring decisions, what triggers new hires to leave (e.g., problems with selection, onboarding or development), and the best recruitment channels. Porteus believes people analytics can raise employee satisfaction by prompting human interaction. “Data analytics can help us stay in front of the curve and ideally ensure that we are on our front foot instead of our back foot.” Browse human resources courses for executives -- Kate Rodriguez is a former senior career search researcher and government analyst who covers career development and higher education marketing for The Economist Careers Network. 原文:https://execed.economist.com/blog/industry-trends/workforce-analytics-what-employee-data-can-tell-us-now?fsrc=blog_socialshare_twitter&utm_source=t.co&utm_medium=referral
    Workforce Analytics
    2018年09月16日
  • Workforce Analytics
    10 Trends in Workforce Analytics (英文) Workforce analytics is developing and maturing. These are the 10 major trends for the near future. 1. From one time to real-time Many workforce analytics efforts start as a consultancy project. A question is formulated (“How do our employees experience their journey?”), many people are interviewed, data is gathered, and with the help of the external consultants a nice report is written and many follow up projects to redesign the employee journey are defined. A one-time effort is nice, but it might be more beneficial to develop ways to gather more regularly and maybe even real-time feedback from candidates, employees and other relevant groups. The survey practice is changing. We see organizations using several approaches: The classic annual or bi-annual employee survey, for a deep dive. Weekly, monthly or quarterly pulse surveys to gather more frequent feedback. A few questions, often varying the questions per cycle. Some more advanced pulse survey solutions are adaptive: they ask more questions to people when they sense there are issues (“How was your week?”. If the answer is “Very Good”, the survey is finished, if you answer, “Not so good”, there are some follow-up questions). Pulse surveys can also be easily connected to the important “moments that matter” for the employee experience. Continuous real-time mood measurement. Innovative solutions in this area are still scarce, especially if you want to measure in a passive non-obtrusive way. Keencorp is an example, they analyze aggregated e-mails and can report on the mood (and risks) in different parts of an organization. In my article Employee mood measurement trends,  you can find an extensive overview of mood measurement providers. 2. From people analytics to workforce analytics Currently, the general opinion seems to be that people analytics is a better label than HR analytics. Increasingly the workforce is consisting of more than just people. Robots and chatbots are entering the workforce. The first legal discussions have started: who is responsible for the acts of the robots? If we’re also analyzing robots, we’re moving from people analytics towards workforce analytics. Robot wellbeing and robot productivity is a nice domain for HR to claim. 3. More transparency This overview of workforce analytics trends cannot be complete without a reference to GDPR. GDPR is fueling a lot of positive developments, one of them being a lot more transparency. About what kind of data is collected, how it is used, and how algorithms are used to make decisions about people. The issue of data ownership is related. It is expected that employees will no longer accept that they cannot own their own personal data. Employees need to have the possibility to show their data to their potential next employer as evidence for their productivity and engagement. 4. More focus on productivity In the last years, there has not been a lot of focus on productivity. We see a slow change at the horizon. Traditionally, capacity problems have been solved by recruiting new people. This has led to several problems. I have seen this several times in fast growing scale-ups. As the growth is limited by the ability the find new people, the selection criteria are (often unconsciously) lowered, as many people are needed fast. These new people are not as productive as the existing crew. Because you have more people, you need more managers. Lower quality people and more managers lowers productivity. Another approach is, to focus more on increasing the productivity of the existing employees, instead of hiring additional staff, and on improving the selection criteria. Using workforce analytics, you can try to find the characteristics of top performing people and teams, and the conditions that facilitate top performance. These findings can be used to increase productivity and to select candidates that have the characteristics of top performers. When productivity increases, you need less people to deliver the same results. A related read on this topic are the 3 reasons to stop counting heads. 5. What is in it for me? A lack of trust can influence many workforce analytics efforts. If the focus is primarily on efficiency and control, employees will doubt if there are any benefits for them. Overall there is a shift to more employee-centric organizations, although sometimes you can doubt how genuine the efforts are to improve the employee experience. Asking the question: “How will the employees benefit from this effort?” is a good starting point for most workforce analytics projects. It also helps to create buy-in, which becomes increasingly important with the introduction of the GPDR. 6. From individuals to teams to networks Many workforce analytics projects today are still focused on individuals. What are the characteristics of our top performers? How can we measure the individual employee experience? How can we decrease absenteeism? Earlier, I gave an overview to what extend current HR practices are focused on teams. As you can see in the table, most of the practices are still very focused on the individual. Workforce analytics can help to improve the way teams and networks function in and across organizations. The rise of Organizational Network Analysis is one of the promising signs. 7. Cracks in the top-down approach The tendency to implement changes top-down, is still common. We like uniformity and standardization. In our central control room, we look at our dashboard, and we know we need to act when the lights are turning from green to orange. HR finds it difficult to approach issues in a different way. Performance management is a good example. Changing the performance management process is often tackled as an organization-wide issue, and HR needs to find the new uniform solution. In line with the trend called “the consumerization of HR”, employees are expected to take more initiative. Employees are increasingly tired of waiting for the organization and HR, and want to be more independent of organizational initiatives. If you want feedback, you can easily organize it yourself, for example with the Slack plug-in Captain Feedback. A simple survey to measure the mood in your team is quickly built with Polly (view: “How to measure the mood in your team with Slack and Polly“). Many employees are already tracking their own fitness with trackers like Fitbit and the Apple Watch. Many teams primarily use communication tools as WhatsApp and Slack, avoiding the officially approved communication channels. HR might go with the flow, and tap on to the channels used, instead of trying to promote standardized and approved channels. How can workforce analytics benefit from the data gathered by on their employee’s own devices? If it is clear, what the benefits are for employees to share their data, they might be able to help to enrich the data sets and improve the quality of workforce analytics. 8. Ignoring the learning curve In their book “Making HR measurement strategic”, Wayne Cascio and John Boudreau presented an often-quoted picture, with the title “Hitting the “Wall” in HR measurement”. The wall was the wall between descriptive and predictive analytics. There are many more overviews with the people analytics maturity levels. Generally, the highest level is predictive analytics. Patrick Coolen of ABN AMRO Bank recently mentioned a next level: continuous analytics, and he introduced a second wall, the wall between predictive analytics and continuous analytics. As predictive analytics seems to be the holy grail, many HR teams want to jump immediately to this level. Let’s skip operational reporting, advanced reporting and strategic analytics. We can leapfrog, ignore the learning curve, and jump to the highest level in one step. For many teams, ignoring the learning curve does not seem to be a sensible strategy. Maybe it is better to learn walking before you start running. 9. Give us back our time! Recently I spoke to HR professionals from big multinationals who were involved in a “Give us back our time” projects. In their organizations, the assignment to all staff groups was: stop using (meant was: wasting) more and more time of the employees and managers, please give us some time back! An example that was mentioned concerned performance management. In this organization, they calculated that all the work around the performance management process for one employee costed manager and employee around 10 hours (preparation, two formal meetings per year, completing the online forms, meeting with HR to review the results etc.). By simplifying the process (no mandatory meetings, no forms, no review meetings, just one annual rating to be submitted per employee by the manager), HR could give back many hours to the organization – to the relief of both managers and employees. Big HR systems generally promise a lot. But before the system can live up to the high expectations, a lot of work needs to be done. Data fields must be defined. Global processes must be standardized. Heritage systems must be dismantled. This results in a lot of work (and agony), for employees, for managers, for HR and for the implementation partners (who do not mind). Workforce analytics can help a lot in the “give-us-time-back” projects, for example by some simple time-measurement. Measure the time a sample of managers, employees, and HR professionals spend on different activities, and estimate the value these activities optimizes the core activities of the organization (e.g. serving clients and bringing in new clients). 10. Too high expectations The expectations of workforce analytics are often too high. Two elements must be considered. In the first place, human behavior is not so easy to predict, even if you have access to loads of people data. Even in domains where good performance is very well defined and where a lot of data is gathered inside and outside the field, as for example in football, it is very difficult to predict the future success of young players. Secondly, the question is to what extend managers, employees and HR professionals behave in a rational way. All humans are prone to cognitive biases, that influence the way they interpret the outcomes of workforce analytics projects. Some interesting articles on this subject are why psychological knowledge is essential to success with people analytics, by Morten Kamp Andersen, and The psychology of people analytics, written by myself. A more general thought: what if you replaced ‘Workforce analytics’ with ‘Science’? What is the role of science in HR? The puzzle is, that there are many scientific findings that have been available for a long time but that are hardly used in organizations. Example: it has been proven repeatedly, that the (unstructured) interview is a very poor selection instrument. But still, most organizations still rely heavily on this instrument (as people tend to overestimate their own capabilities). Why would organizations rely on the outcomes of workforce analytics, when they hardly use scientific findings in the people domain? An interesting presentation on this topic that I recommend is by Rob Briner, titled evidence-based HR, what is it and is it really happening? There’s a lot that’s changing in the world of work. These are the 10 trends in workforce analytics that I’m seeing today and that will likely impact the way we work in the near future.   This article is based on a keynote I gave at the Workforce Analytics Forum in Frankfurt, Germany, on April 18, 2018. by Tom Haak Tom Haak is the director of the HR Trend Institute The HR (Human Resources) Trend Institute follows, detects and encourages trends. In the people and organization domain and in related areas. Where possible, the institute is also a trend setter. Tom has an extensive experience in HR Management in multinational companies. He worked in senior HR positions at Fugro, Arcadis, Aon, KPMG and Philips Electronics. He holds a master’s degree in Psychology. Tom has a keen interest in innovative HR, HR tech and how organizations can benefit from trend shifts. Twitter: @tomwhaak
    Workforce Analytics
    2018年06月27日