Workday People Analytics:利用人工智能、机器学习和增强分析的优势
文/Pete Schlampp
有人说,数据是新石油。但是几乎在所有公司,其生成的数据远远超过他们能够分析利用的数据。而在很长一段时间里,Workday的目标都是帮助公司从数据中汲取有价值的见解。从内置报告和分析开始,随着Workday Prism Analytics和Workday Data-as-a-Service的推出,随着数据量、速度和种类的增长,Workday扩大了产品范围,帮助客户充分利用他们的数据。
Workday Prism Analytics致力于开放性和将非Workday的数据引入系统,是您的财务和人力资源团队的数据中心。今年夏初,Workday通过收购增强分析的市场领导者Stories.bi,在分析之旅中又向前迈进了一步。
今天,我们很高兴地宣布Workday People Analytics,是一个全新的应用程序,它将向高管、组织领导人和人力资源业务合作伙伴提供关于他们的员工队伍中最关键的趋势视图,以及了解趋势的最可能的驱动因素。它将利用强大的人工智能(AI)、机器学习和增强分析技术,提供动态创建的关键指标,并伴有解释性叙述——我们称之为故事。
How We Got Here
首先需要一些背景。注意让Workday People Analytics与我们现有的产品一起工作。由于Power of One,Workday有一个数据模型,因此我们的应用程序能够非常轻松地处理有关人员的数据。对于Workday人力资本管理(HCM)的客户来说,Workday People Analytic将利用这些数据进行开箱即用。即使对于那些不使用Workday HCM的客户,他们也可以通过Workday Prism Analytics从任何HCM系统中引入外部数据,因此这些见解仍将可用。
That’s Great, Now What?
其次,我们必须以更好的方式将有价值的信息交给高管。因此,Workday利用了增强分析将许多应用于企业问题的AI功能集合在一起,包括:
自动模式检测功能,可以查找人类可能看不到的重要变化
图形处理以查找大量数据集之间的连接
机器学习预测最重要的问题供您查看
用自然语言来解释一个简单的故事中发生的事情
Workday的人工智能将搜索数百万种可能的数据场景,并确定优先级,以故事形式自动向高管推送个性化见解。故事为正在发生的事情提供了一种自然的语言解释。洞察力可以是积极的,也可以是消极的——它们只是你应该知道的事情。它们会自动地对你的数据进行更深入的挖掘,并告诉你为什么会这样。这为领导者提供了在做业务决策时所需要的基本信息。
See What Matters Most
Workday People Analytics是我们第一个使用增强分析的地方。它将为管理人员,组织领导者和人力资源业务合作伙伴提供可操作的指导,将动态创建的故事与静态内容相结合,涵盖组织构成、多样性、招聘、保留和人员流失以及人才和绩效等方面。
您将看到最重要的事情,以便您可以在最短的时间内做出最佳决策。这将使得组织的行动,创新和学习速度更快。
Workday People Analytics不是自动生成针对特定问题的预测,而是提供一种叙述,以指导管理人员在一个广泛的领域中找到聚焦点——无论是具体的团队、位置、客户还是产品线。它使用机器学习来预测和展示真正重要的东西。换句话说,Workday People Analytics会告诉您需要了解的内容。
例如,一位人事主管可能会收到一条消息,表明新员工流动总体上有所增加,他们不仅应该关注伦敦的销售组织,还要考虑薪酬以及特定的招聘经理。该应用程序可帮助领导者专注于影响其业务的最重要问题,并回答以下高价值问题:
招聘过程中的瓶颈是什么?
该组织多样性的五大趋势是什么?我们作为一个社区如何发展?
整个组织可以从哪些卓越的领域中学习?
我们在哪里看到异常高的磨损?它背后的驱动力是什么?
因此,信息负载减少了1000倍——你会发现什么是最重要的,这样你就能在最短时间内做出最佳决策。组织行动、创新、学习更快,形成良性循环。
Future’s So Bright…
Workday People Analytics只是一个开始,我们很高兴能够进入数据的新时代,超越自助服务,进入人工智能能够有效预测的世界。未来,我们将在所有Workday的产品中应用增强分析。Workday People Analytics将于明年秋季提供给早期用户,通常在2019日历年末提供。单独销售给Workday HCM客户,它将作为Workday Prism Analytics的一部分提供。我们确信好戏还在后面。
以上为AI翻译,观点仅供参考。
原文链接:Announcing Workday People Analytics: Leveraging the Strength of AI, Machine Learning, and Augmented Analytics
产品
2018年10月06日
产品
LinkedIn推出Talent Insights,正式涉足商业智能领域文/Ingrid Lunden
LinkedIn ,一个专门发布个人或组织专业档案的公共网站,人们将其视为网络招聘的起点,如今这项服务已经吸引了超过5.75亿用户,2000万家公司和1500万活跃职位列表。但现在在微软的所有权下,该公司已经开始越来越多地构建其它服务; 今天看到最新的服务是它们推出的一个名为Talent Insights的新功能。
Talent Insights之所以重要,部分原因在于它是LinkedIn首次涉足商业智能。作为该企业分析的一个分支,它旨在帮助高管和其他企业最终用户做出更明智的业务决策。
此外,Talent Insights值得注意是因为它是趋势的一部分。LinkedIn已经推出了许多其它服务,使其不仅仅是一个单纯的社交网络,而更多的是IT生产力工具。它们为用户提供了一种查看和计划前往潜在工作(或其它业务)的通道; 与Microsoft软件集成,包括与Word 和Outlook中的简历构建集成 ; 并在其Sales Navigator 产品中添加更多CRM工具。
有趣的是,距离LinkedIn 首次宣布Talent Insights 到今天实际推出已有一年。该公司表示,部分原因在于期间一直在修补它的缺口以使产品完善:它一直在与众多客户间进行测试——现在有100个使用Talent Insights——比如在人力资源、招聘和营销等部门工作的员工。
今天推出的产品大致类似于公司一年前预览的产品:它有两个部分,一个专注于公司人员,称为“人才库”,另一个专注于公司数据,称为“公司报告”。
其中第一项将允许企业在LinkedIn数据库中进行搜索,以发现那些与企业已经招聘过的人才特征相似的人才,并找出他们目前的位置(就位置和公司从属关系而言),以及他们动向,他们可能有什么共同的技能,以及如何更好地发现那些拥有所有这些特征的人。
第二组数据工具(公司报告)提供了类似的分析概况,比如关于您的组织以及您希望在相关教育水平和相应劳动力学校等领域与之进行比较的组织; 员工拥有或不拥有的技能; 等等。
运营Talent Insights的高级产品经理Dan Francis在接受采访时表示,目前用于为Talent Insights提供支持的大部分数据主要来自LinkedIn本身,尽管还有其他数据来源,例如来自劳工统计局的材料。(事实上,即使是LinkedIn的其它一些数据库,例如在其招聘列表中,甚至在其新闻/内容播放中,填充两者的材料都来自第三方。)
他还补充说,让公司提供他们自己的数据来使用数字运算——无论是他们自己的报告还是其他公司的报告 - “在我们的路线图中,”表明LinkedIn看到了这个产品的一些进程。
添加更多数据源也可以帮助公司显得更加公正和准确:虽然LinkedIn在专业配置文件方面是庞大的,也是同类信息中最大的信息库,但它并不总是准确的,比如在某些情况下可能完全受过时了或故意误导的信息影响。
(相关:LinkedIn还没有为人们发布任何“验证确认”的个人资料,例如你在Facebook或Twitter上发布,以证明他们是他们所说的人,他们在工作的地方工作,以及他们的背景这是他们声称的那样。我猜测可能是如果是错的,以明确的方式验证一切是非常困难的,所以LinkedIn依靠公众监督的力量来保持人们的诚实度。)
“我们对此非常透明,”Francis说。“我们并不认为这是一种全面的产品,但它是一种代表性的样品。在确保数据质量良好方面,我们非常谨慎。我们知道有时数据并不完美。在某些情况下,它是方向性的。“
以上为AI翻译,观点仅供参考。
原文来源:LinkedIn steps into business intelligence with the launch of Talent Insights
产品
2018年09月26日
产品
YC新星:人力资源聊天机器人Leena AI获得200万美元种子轮融资
文/Ron Miller
人力资源科技创业公司Leena AI今日宣布从数位投资人那里筹集到200万美元的投资,其中包括著名投资人Elad Gil,Snapdeal联合创始人Kunal Bahl和Rohit Bansal, 以及FundersClub基金, Quiet Capital (Lee Linden, Matt Humphrey, and Ray Bradford)和Cathexis Ventures等投资机构。
Leena AI公司专注于开发人力资源聊天机器人,解决员工的疑问。今年夏季,Leena AI参加了Y Combinator创业课程,此次融资也是紧随毕业之后。
公司联合创始人兼首席执行官Adit Jain表示,种子资金将用于扩大公司规模并赢得客户。他们希望在未来12-18个月内拥有50家企业客户。目前,他们有16个。
据Jain解释,他们于2015年在印度开过一家名为Chatteron的公司。最初的想法是帮助其他人建立聊天机器人,但是像许多创业公司一样,他们意识到这个需求没有被解决,通过这次在人力资源领域的尝试,他们从去年开始专注于开发Leena AI。
随着他们对人力资源问题深入研究,他们发现大多数员工无法获得基本问题的答案,例如他们有多少休假时间或如何利用健康保险当他们有新生儿时。当信息可在网上找到时,这就迫使求助于电话服务台,但也并不总是很容易得到。
Jain指出,大多数人力资源政策都被写在政策文件中,但员工并不总是知道它们在哪里。他们认为聊天机器人是解决这个问题的好方法,可以节省大量时间搜索或寻找那些本应该很容易找到的答案。更重要的是,他们了解到绝大多数问题都相当普遍,因此系统更容易学习。
员工可以通过Slack, Facebook的Workplace, Outlook, Skype for Business, Microsoft Teams和Cisco Spark访问Leena聊天机器人。同时,他们还提供Web和移动端访问服务。
图片:Leena AI
更重要的是,由于大多数公司使用一套通用的后端人力资源系统,如Oracle,SAP和NetSuite(也属于Oracle),他们已经能够构建一套标准的集成商,这些集成商可以顺利采用他们的解决方案。
客户向Leena提供手册或一套政策文件,他们将机器学习用于此。Jain说,凭借这些信息,他们可以将这些文档转换为一组结构化的问题和答案集,并将其提供给聊天机器人。他们应用自然语言处理(NLP)来理解被问到的问题并提供正确的答案。
他们看到了超越人力资源的空间,并扩展到其他部门,如IT,财务和供应商采购,这些部门也可以利用机器人来回答一系列常见问题。目前,作为最近的YC毕业生,他们获得了第一笔巨额资金,他们将集中精力建立人力资源聊天机器人,并看看这会把他们带到哪儿。
注:以上内容由AI翻译,观点仅供参考。
原文链接: Fresh out of Y Combinator, Leena AI scores $2M seed round
YC 路演企业服务项目 Leena 人工智能的HR助理这个项目我们之前报道过,点击这里就好了
不多说
http://www.hrtechchina.com/22861.html
Leena AI
假如你在一家大公司工作,当你想了解休假、医保等问题时,你会发邮件或打电话联系HR,等待答复,而Leena AI通过构建HR智能聊天助手实时回答员工的提问来改变这种状况。它是目前唯一一款由人工智能平台驱动的HR虚拟助理,经12,000家企业上千万的会话数据训练而成,拥有出色的自然语言处理能力。
https://www.leena.ai/