• 新创
    为什么非正式网络将彻底改变人力资源和人力资本分析? 文/Greg Newman 迄今为止,在利用全球人力资源和全球人力资源系统领域的非正式网络和团队的力量方面所做的工作很少。 团队合作的流动性和非正式性一直意味着在任何规模上都不可能捕捉到不断变化的团队成员和动态。 虽然由Karen Stephenson和Rob Cross等人开创的组织网络分析(ONA)背后的科学已经成熟,经过试验和测试,但是这些强大的数据点成为主流的能力一直是扩大这些洞察力的主要障碍。 毫无疑问,基于ONA的传统调查产生了很好的结果,但其“时间点”性质和高成本开销意味着虽然可以识别和衡量团队和联系,但几乎不可能保持数据最新。 非正式网络终于可见了 图1:揭示支撑正式级别结构的关系。 像我自己(trustsphere.com)这样的公司最近的技术飞跃已经将ONA从基于纸张的流程转变为实时连续的数据流,这改变了组织映射其非正式网络的能力,并了解工作真正完成的方式。 随着人力资源和新成立的人力资本分析/劳动力分析团队试图解决看似Sisyphean的挑战,试图衡量参与度,生产力和员工幸福感,作为一种直接的替代方案,ONA可以提供硬数据并回答特定的业务问题。 我预测2017年将成为ONA成为主流的一年,并最终得到应有的认可,因为它展示了它如何能够快速阐明这些类型的业务关键问题: 谁是我们最有影响力的员工? 图2:找到将网络连接在一起的隐藏影响者。 通过测量中心性,特征向量中心性(以及其他一些秘密调料),ONA可以快速量化员工施加影响的能力(甚至可以在组织内部实际影响他们的非正式网络)。这使组织能够在组织中找到可以帮助推动变革和支持业务转型的隐藏影响者。 我们实际上需要做谁的持续计划? 图3:谁拥有最独特和最有用的网络? 持续计划一直是一个相当公式化和粗略的过程,通过简单地查看员工在正式层级中的位置来确定目标角色。通过查看每个员工的网络,其独特性,隔离性和重叠量,ONA帮助组织找到那些对管理关键内部和外部网络至关重要的员工,以及实际应该进行持续计划工作的员工。下一步是了解哪个员工最适合,谁已经建立了类似的网络或显示可能的继任者的网络潜力。 我的员工如何融入在组织中? 图4:反映员工融入人际网络的改变。 从跟踪新的首发网络的速度和传播到识别隐藏的僵尸,吸血鬼和识别潜在的飞行风险,ONA可用于提供员工内部和外部网络的增长,平稳,停滞和收缩的实时洞察,员工总体参与和表现的主要信号。 良好的领导行为是什么样的? 图5:领导行为的量化证据。 衡量一线经理与其直接报告之间的强大关系数量,了解优秀领导者网络如何在整个组织中传播,并对最佳领导者的网络进行基准测试现在都是可能的。提供重要数据和面向行动的辅导建议可帮助组织培养自己的领导者。 我们在哪里协作得好,哪里不好? 图6:衡量个人和团队的协作。 衡量协作一直很困难,衡量协作的变化,几乎不可能,但ONA提供有关信息流,关系的力量以及个人及其工作的团队和单位的网络活动的数据。突然间,合作已经从抽象和理论,到可衡量和可行的。 ONA能够帮助识别所有这些行为和活动,然后监控其变化,这为世界各地的组织提供了识别,培养和留住顶尖人才的独特竞争优势。 人力资源团队非常关注组织的正式结构和级别结构,但随着市场中的计算进步和创新技术,最终有可能大规模地研究组织中的非正式网络。 以上内容由HR Tech China AI翻译,仅供参考
    新创
    2018年07月11日
  • 新创
    人力资本分析:通过人员数据分析推动业务绩效 来源/CIPD 文/Edward Houghton 目前在我们这个世界上和世界杯一样狂热的话题,是人力资本分析。 6月底,Jonathan Ferrar向欧洲客户推出了Insight222全新的Nine Dimensions for Excellence Analytics in People AnalyticsTM模型。 Insight222的董事顾问与Jonathan合作开发这个模型。 关于模型的更多细节将在未来几周内发布。 人力资本分析对于组织来说是一个不断增长的议程,特别是考虑到在工作场所技术的兴起,现在能够跟踪个人的行为,并更深入的洞察他们的工作表现,业绩和福利。 随着技术进一步影响到工作领域,预计组织中数据的使用将继续推动业务和员工的成果,投资者和潜在员工在内的更多利益相关者对人员数据表现出兴趣。 为了解人们如何使用人力资本分析来理解人员数据,我们调查了全球3,852名商业领域的专业人士观点和意见。 图1:我们研究的参与者 研究目的: 我们使用调查结果来了解: 人力资本分析如何影响组织层面的成果,如绩效和文化 人力资源和财务等不同的专业团队如何看待人力资本分析的影响 HR功能在人力资本分析和人员数据方面的能力如何 如何使用人力资本分析来了解组织面临的业务挑战和人员风险 结果显示: 强大的人力资本分析文化可带来良好的业务成果 通过调查,我们能够描述组织中存在的强大的人力资本分析文化: 积极利用人员数据来解决业务问题 拥有经常讨论人员数据透明度,观点和价值的重要性的管理团队 让一线经理基于人员数据来做出业务决策。 图2:与强势文化相比的强劲业务表现(%) 我们还发现,人力资源专业人员正在使用人员数据来应对其组织面临的重大挑战。 我们的调查发现,全球四分之三(75%)的人力资源专业人员正在使用人员数据解决劳动力绩效和生产力问题,这说明了这些信息对战略性劳动力问题的重要性。 图3:使用人员数据解决关键业务挑战(%) 访问人员数据以进行决策 我们发现数据的可见性(例如通过数据仪表板)与改进的结果相关联,但访问因职业而异:尽管全球人力资源专业人员中有近四分之三(71%)可以访问人员数据,但只有五分之二(42 %)财务专业人士说他们这样做,说明了专业之间的明显差距。 图4:您是否可以访问组织生成的劳动力/人员数据?(%) 我们发现,人员数据的可见性改善了对绩效的看法,73%的绩效优异企业的受访者同意或完全同意他们可以访问人员数据的仪表板,相比之下,50%的人表示他们的业务是平均表现。 图5:管理员可以访问人员数据仪表板(%) 图6:人员数据技巧和信心 在我们对英国数据的分析中,我们发现英国人力资源专业人士尚未发现潜力:我们发现21%的英国人力资源专业人士表示,他们对更先进的技术(如结构方程模型)充满信心或非常有信心,但只有6% 英国人力资源专业人士表示,他们将这些用于日常工作,这表明许多人力资源专业人员没有机会在他们的角色中运用他们的技能。 我们还调查了有关人力资源技能和能力的其他专业观点。 图7:人力资源人员数据技能的专业观点(%) 人员风险,数据保护和数据安全 劳动力数据的数据保护仍然是所有专业团体的一个重要问题:所有专业团体都普遍认为整体人员数据应得到充分保护。但 不到三分之二(61%)的人力资源专业人士认为他们的组织采用联合方法来保护其数据。 关于数据保护的专业观点(%) 我们还调查了可用于了解关键人员相关风险的人员数据质量。 我们发现数据质量通常评价很高,但是一些关键人物风险领域的风险管理(例如高级职位的更替)的有效性水平较低。 结论 我们发现,如果要由一线经理在决策中使用,特别是那些与财务相关的角色,那么劳动力数据的透明度至关重要。 人员数据的可见性有助于人力资源和非人力资源部门做出决策。 本研究的另一项重要发现是人力资本技能的重要性和促成良好结果的信心。 区域差异显示技能和信心如何与结果相关,东南亚通常以更高质量的分析技能领先实践。 英国在信心和技能水平方面都特别受限,突出了未来能力的潜在风险。 我们还发现,通过人员数据的应用,人们可以理解风险,这是实践中的一个新兴领域。 鉴于最近在欧盟实施了“通用数据保护条例”并对使用人员数据进行衡量,人员数据安全等问题变得非常重要。 但是,仍然有一些方法可以改善人力资源专业人员如何阐述更广泛的人员风险和机会问题。 这项工作突出表明,在人力资源团队生产和消费数据方面,人力资源专业人员仍然有很多潜力可以实现人员数据对其结果的潜在价值。 人力资源部门必须率先将人员分析作为未来循证专业的核心组成部分。 只有做到这一点,我们才相信人力资本分析所承诺的潜在价值最终将会实现。 以上内容由HR Tech China AI翻译,仅供参考
    新创
    2018年07月09日
  • 新创
    e成科推出校招AI面试机器人Chatbot 文/e成君 很多HR朋友在校招季每天要面对大量的毕业生简历,基于此等现状,e成科推出了校招AI面试机器人Chatbot。 Chatbot面试机器人到底是什么?  Chatbot面试机器人,是e成科技历经数年时间研发出来的AI校招工具,结合了AI和大数据,通过人工智能系统记录和分析与应聘者的整个线上讨论过程,评估出面试者的表现情况,从而助力企业加速数字化人才决策进程。   在招聘过程中Chatbot充当AI面试官,智能匹配人才 开启Chatbot面试机器人非常简单,只要大学生们登录校招官网,完成简历投递,并扫描职位后方的二维码,就能直接与e成的Chatbot面试机器人进行初轮面试了。 Chatbot面试机器人会把和大学生面试的整个对话过程记录下来,进行语义解析。它采用的是微信原生的语音识别技术,支持语音对话。基于大学生的语音特征,Chatbot面试机器人将建立个性化的词条语言模型,持续优化识别效果,提高个性化词条识别准确率。而语义解析,是基于AI实现信息提取,通过云计算的精准算法达到筛选目的。在语义解析的过程中,Chatbot面试机器人还增加了面试者情绪、情感等多方面的分析,能够准确地评估出面试者的表现。   Chatbot机器人VS真人面试 智能面试,多维度考查大学生职业能力 校招季,应聘者数量将是平时的好几倍,不分时间不分地点,投递简历。加上HR朋友们没办法全天候守在电脑前筛选简历、通知面试,安排初试,无法一一面试每一个候选人。 Chatbot机器人面试官通过语音对话的方式,从候选人个人素质,沟通能力,团队合作能力,创新能力等方面,多角度提问,从对话的过程中了解候选人的职业能力,实时评估出该面试者是否匹配岗位要求。 不仅如此,Chatbot机器人面试官还可同时面试上千名应届生,极大缩减了公司的招聘成本。   智能性格测评,高效挖掘大学生潜在匹配点 实际面试过程中,同一岗位的应聘者由于学校、专业、成绩等各方面水平基本相差无几,根本无从选择,让HR头痛不已。 e成AI校园招聘解决方案为了解决这个难题,在Chatbot面试机器人中内置了大量专业性格测试题库,通过性格测试来甄别符合企业价值观、符合企业招聘岗位需求的候选人,帮助企业做出最佳的人才匹配。 HR可根据企业需求,自主选择所需要的题目内容,测试候选人的综合素养、综合能力,包括人品、修养、勤奋度、责任感、协作精神等,评估该应届生能否在入职后达到企业期望目标,能否融入团队,给企业带来价值贡献。 测试结束后,测试结果将实时通过可视化结果形式传达给HR和应届生,直观展示应届生的性格特征。 如果应届生条件匹配岗位要求,顺利通过了面试,Chatbot面试机器人会很快安排真人HR的正式面试;如果不匹配,会向应届生推荐其它适合的岗位。   智能雇品,校招初面中建立雇主品牌形象 众所周知,雇主品牌作为企业品牌的一部分,许多求职者也是雇主“产品”的消费者。良好的雇主品牌能传递企业文化和价值观,并吸引符合核心价值观的匹配人才加入企业。在人才选拔初期,HR和应届生深入接触,这个阶段往往是给潜在员工留下良好印象、提升雇主品牌的最佳时机。 然而,大多数企业并没有意识到雇品形象在校园中的影响力,直接导致校招过程中投递量少,无法满足企业的招聘目标;其次,很多应届生直至面试结束,对企业和岗位仍是一知半解。因此,在潜在员工中树立雇主品牌形象,成为了校招过程中不可或缺的一步。 基于此, Chatbot机器面试官提供公司背景、公司文化等信息供面试者阅览,在校招初始阶段,就给潜在员工植入企业雇主品牌形象,让面试者更了解公司的同时提升了雇主品牌形象,吸引更多优秀人才加入。   除此之外,Chatbot面试机器人还具备机器学习能力  Chatbot面试机器人实现以云数据为基础,具有机器学习能力。语料信息库中,存储的不只是产品设计师设定的回答,还有一部分回答是机器在自我训练及学习中逐渐形成的。在和面试者对话的过程中,不仅支持在庞大的语料信息库里抓取原有数据,还可以对有价值的语料信息进行结构性重组,让面试者忘记自己正面对着“机器人”面试官。 从大学生投递简历的那一刻起,Chatbot面试机器人的系统迭代就进入了良性循环,它越符合面试的需求,黏性将越高,获得的校招数据就更多,从而形成一个完美的闭环。 经过Chatbot面试机器人的初步面试,能够识别重复投递的简历以及不同工作岗位的简历,为HR节约面试时间,将HR从大量重复性的、耗时的且毫无成就感的初步面试工作中解放出来。
    新创
    2018年07月06日
  • 新创
    讨厌填写繁琐的求职表格?MeetFrank用聊天机器人提升求职体验,获110万美元种子轮融资 来源/猎云网  36氪 文/施安 让我知道你想找什么,让你知道你想要什么。 一段心塞的求职经历大概是这样的:登陆并注册某一家招聘网站或公司招聘主页-手动输入自己的个人资料、学历背景、工作履历、求职信-登陆并注册下一家招聘网站或公司-重复以上所有步骤…… 如果你一次性想投好几家公司,那么恭喜你,一整天你都会钉在电脑前,填写没完没了的表格。与此同时,电脑那头的HR,也在海量的数据中苦苦寻找快要被淹没的你。 求职真的只能是一件枯燥无味又让人烦心的事情吗?近日,刚刚获得100万欧元种子轮融资的AI 招聘APP MeetFrank ,就派出了一个有趣的聊天机器人来解救你。 另一段全新的求职经历开始了:打开MeetFrank-和耿直boy Frank开始聊天-所有涉及信息的部分直接勾选-在Frank的卖萌中结束求职“填写”。 “Frank”会像朋友一样主动热情的的找你聊天 没错,MeetFrank 的主角就是一个叫Frank的聊天机器人。下载该app的用户首先要和Frank进行一次快速的“入职谈话”—— 从设定好的各种选项中选择他们拥有的技能、经验、为何要换工作、目前职位、薪水等等,省去自己写简历、填表格的烦恼。并且,用户不需要提供任何可以识别个人身份的信息,仅通过自身能力去匹配潜在的工作机会。 求职信息收集的过程中你只需要勾选,无需手动填写 在下载并亲身体验这款APP后,我们发现Frank的几个优点: 1、注册简单,无需绑定任何可能暴露自身隐私信息的ID,如身份证护照、社交账号、手机号等。 2、整个聊天过程,也就是求职信息的收集过程,大概只需要几分钟的时间,时间成本很低。 3、聊天过程非常流畅,并且Frank是一个性格特征为主动、热情、幽默的俏皮boy,偶尔还会“撩”你一下,让人几乎忘记是人机对话,很轻松。 4、信息收集的维度比较丰富,除了常规的个人资料及工作背景,Frank还试着了解你对于当前工作的认知与感受,想要换工作的原因以及你未来的打算,这个过程其实也是进行自我梳理的过程。从对话语体设置到话题维度的设计,都比较人性化。相比之下,国内以企业招聘为中心,单纯的有效信息收集,显得冷冰冰。 5、不填性别,也没有任何性别导向的问题,注重求职中的性别平等。 花几分钟的时间跟Frank聊聊天,提交求职信息顺便梳理自己 资料显示,这家爱沙尼亚创业公司在去年九月刚刚成立,但它声称在其首批市场(爱沙尼亚,芬兰,瑞典,拉脱维亚,立陶宛,以及新增的德国)拥有约125,000名活跃用户。 目前,已经有大约 2,000 家公司正在使用 MeetFrank 来吸引人才。以德国为例,戴姆勒、Eon、Delivery Hero、SumUp、Blinkist、High Mobility 和 MyTaxi 等公司都在使用 MeetFrank。 “目前使用我们的雇主主要是技术相关的公司,”Kaarel Holm说。 “大约50%的职位是工程师,其他50%包括市场营销,销售,客服,法律,数据科学,产品/项目管理等。” 获得本次首轮融资后, MeetFrank 将把重心放在开拓欧洲市场。Hummingbird VC, Karma VC和Change Ventures参与了此轮投资。 除了提升求职者体验外,对于雇主而言,MeetFrank代替了传统招聘广告,使用机器学习算法将潜在候选人与职位匹配,因此它实际上承担了简历初筛的工作。并且,它还有可能吸引本不知道该公司正在招人的求职者。正如Holm所说,MeetFrank主要关注“被动人才库”,让那些因为怕找工作麻烦而长期呆在一家公司的优秀人才,也能被HR发掘。 虽然MeetFrank的目标是被动求职者,但这些人仍然需要主动下载应用并输入一些数据。 因此,聊天机器人拥有一个强大的表情+GIF系统,来说服人才,只需一点前期的努力就可以大有作为。 机器人还会询问什么能说服他们换工作,所提供的选择包括更高的薪水,更灵活的或远程的工作,搬家,创企文化等等。 在这一过程中,求职者是以匿名方式出现的,因为用户不需要提供真实姓名或任何其他识别个人信息,来获得与潜在职位的匹配。 因此,至少在求职的这个阶段,人才是根据其优点来评估的。 Holm说,当人们被要求预先说明他们目前的薪资水平时,你可能认为这会使他们在薪酬谈判中处于潜在的不利地位,但MeetFrank平台的目的是鼓励雇主更加开放,避免传统的薪酬谈判情况。 “我们使用薪资作为匹配的一个数据点,我们努力确保向用户提供的服务符合他们的偏好。在很多情况下,薪资是主要的交易破坏者,我们希望尽早提供这些信息,”他解释说。“市场另一端的公司也向用户披露他们的工资,这样我们就可以避免谈判中的劣势。” 他补充说:“MeetFrank平台的政策是,公司必须对所要填补的职位非常开放,所以这也包括了薪资资讯。” 当然,雇主并不是以匿名形式存在于平台上的。他们必须发布详细的招聘广告,包括招聘职位的薪酬水平。 而应用会在确认过合适的薪资范畴之后(即匹配过程之后),向求职者显示薪资增长的百分比。 所以,雇主需要适应那些只是好奇的求职者。 对于雇主来说,MeetFrank接管了广告投放过程,它利用机器学习算法将潜在候选人与职位匹配。因此,它会在“成千上万”的潜在求职者中自动预选。 当然,在这一过程中,接触到的人才可能并不知道这家公司正在招聘,或者这些人才在考虑某些特定品牌。 该应用主要关注“被动人才库”,也就是Holm所说的“目前或最近正在求职的人才”。因此,招聘双方能够更容易地找到匹配的对象。 “目前初级职位对我们来说有点遥不可及,但我们将在今年秋季与几所大学启动一个测试项目,”当我们问到这个应用是否对目前没有工作或正在寻找第一份工作的人开放时,他补充说道。 Holm说,MeetFrank目前显示出50%的MRR增长。它已经脱离了前收入阶段,即向雇主收取广告费用(人才方面的服务仍然免费)。 主要的货币化模式是每日订阅,按现收现付制对雇主收费。Holm说,向雇主收取的费用是每天9欧元,MeetFrank允许他们在任何时候取消订阅,没有最少的时间限制。 “我们认为,新时代的分类广告只会在这种按需模式下盈利,也只有在发现我们有用时才应该付钱。这也降低了大多数初创企业进入市场的障碍,使它们能够在低预算的情况下检验市场并获得知名度,”他补充说道。 目前市场上已经有不少招聘AI软件和应用,但真正从求职者体验出发的产品或工具并不多,也鲜少有公司真正为求职者着想,帮助他们梳理自己真正想要什么。36氪此前报道过的法国初创公司Reminder,加拿大的AI招聘虚拟助理 Ideal 及加州的 Talent Sonar,都大多从服务企业招聘、优化求职者筛选的角度出发。或许换一种思路,如何从求职者角度出发,给他们更方便更放松的求职体验,赢得更多优秀年轻人的心,MeetFrank 或许是一个很好的启发。 MeetFrank,一种“秘密”招聘应用,它使用机器学习和聊天机器人来缓解被动求职和人才空缺匹配的压力。为推动欧洲市场的扩张,该创企在种子轮融资中获得了100万欧元(110万美元)的投资。 投资者包括Hummingbird VC、Karma VC和Change Ventures。 这家爱沙尼亚创企虽然去年9月才成立,但它表示,自己在第一市场中拥有大约12.5万名活跃用户。第一市场包括爱沙尼亚、芬兰、瑞典、拉脱维亚、立陶宛,此次融资助力扩张的德国市场也包含在内。 大约有2000家公司正在使用该应用来吸引人才。在德国,与MeetFrank进行合作的雇主包括戴姆勒、Eon、Delivery Hero、SumUp、Blinkist、High Mobility和MyTaxi。 “目前我们所接触的公司一般是正在公司内部开发产品的初创或扩张公司,”联合创始人Kaarel Holm表示。 “目前我们主要关注与技术相关的公司,所以你可以从普通的初创企业或规模扩大企业中找到工作,”他说。“大约50%的职位是工程,另外50%是市场营销、销售、客户支持、法律、数据科学、产品/项目管理等。” 他将TransferWise、Taxify、Testlio、Smartly和High-Mobility称为早期客户。 以上内容由HR Tech China综合整理报道
    新创
    2018年07月05日
  • 新创
    Human-Centered A.I. is the Future of Talent Management Will A.I. eliminate my job? It’s a clickbait title most of us are now familiar with. In recent years we’ve been met with a wave of articles and soundbites — ranging from the realistic to apocalyptic — speculating as to whether A.I. will replace human jobs, take over the world, or otherwise render Us insignificant. Tesla CEO Elon Musk has even gone so far as to suggest that the volume of jobs that will be lost due to automation will create the need for a universal basic income. A fear of new technology, and of the impact that that technology will have upon the job market is not new. Technological developments that arose during the Industrial Revolution created public fear of mass unemployment (a fear that ultimately proved to be unfounded given the large number of new jobs these technologies created). Yet the narratives have never felt quite so existential before this moment. So what is different about A.I. that has so captured the public interest, and it seems, fear? It seems to lie in the idea that intelligent machines will not seek to supplement aspects of our existence, but rather, replace us entirely. Computer Scientist Subhash Kak advocates for this idea with respect to the job market in his think piece for NBC News (a piece, it is worth noting, entitled “Will robots take your job?”). The reason A.I presents a greater threat to society as we know it, he argues, is “today’s A.I. technology aims to replacethe human mind,” not simply to make industries more efficient (my emphasis). It would be naive to ignore the reality of Kak’s argument with respect to tasks requiring learning and judgement. A.I. is already replacing human decision-making in industries such as transportation and manufacturing. But are all applications of A.I. really aiming to replace the human mind in the workplace? And should they? There are other views — and other technological frameworks — to be had here. “Human-Centered A.I.” In opposition to A.I.’s “takeover” rhetoric exists a school of thought that explicitly acknowledges the benefit of partnership between humans and intelligent machines. Fei-Fei Li, director of the Stanford Artificial Intelligence Lab, calls this approach “human-centered A.I.” — a framework for guiding the development of intelligent machines by human concerns. At a high level, the goals of human-centered A.I. are as follows: A.I. should aim to enhance human thought rather than replace it A.I. should encompass the more nuanced and contextual aspects of human intellect, aided by outside fields such as psychology and sociology The development of A.I. technology should be guided by a concern for its effect on humans There are a number of cross-industry applications of A.I. that can be viewed within this partnership framework. Take, for example, the development of robots used to reduce costs, time, and human-error during surgery, allowing doctors to focus on the more nuanced aspects of the surgical process. Or, developments of A.I. in agriculture, such as Blue River Technology’s “see and spray” technique for applying herbicide only where needed, saving farmers money on herbicide and delivering a more sustainable product to consumers. But perhaps even more in contrast to the fear of a robot taking one’s job, is the increasing extent to which A.I. is being applied the field of talent management. That is to say, A.I. is being used to actually improve the workplace and the worker experience, rather than replace the worker. A.I. as a Tool for Improving the Workplace In the past several years, we have seen an emergence of companies applying A.I. to problems in talent management. From Paradox.AI’s Olivia, to Beameryand Textio, its fair to say that A.I. is on HR’s radar in a way that it wasn’t 5 years ago. What’s interesting about this trend is that unlike other industries with a stronghold in A.I., talent management has until recently been viewed almost exclusively as a “fuzzier” aspect of the business. It is an industry built on relationships, human connections, and emotional intelligence, and yet, it is being improved with A.I. To be fair, up until now a majority of A.I. solutions for talent management have focused on the more tedious and error-prone tasks around candidate sourcing and evaluation (tedious + error-prone = a perfect opportunity for automation). But there are also opportunities for A.I. to improve the post-hire aspects of the employee experience, and human-centric A.I. is the key. As the marketing world has known for years, A.I. provides a unique opportunity for scaling a personalized experience. Why would you show me the same thing as everyone else, when I’m more likely to convert if you show me exactly what I want? The same principles can be applied to the post-hire employee experience. Employees have different skills sets and motivators. If my employer places me in an environment that is optimized for my skills and motivators, I’ll stay. If not, I’ll move on. As the progression towards a digital workplace continues, companies also have more data about their human capital than ever before — who they are talking to, what they eat, when they’re online every day. WeWork is basing their business model around this data. Human-centered A.I. can unleash this data to help talent leaders create a more personalized employee experience. It is in “fuzzier” domains like talent management where human-centered A.I. shines, not just for ethical reasons, but because it provides the best user experience. At Cultivate, for example, we apply human-centered A.I. to personalize the leadership development experience for managers. Using digital communication data as a proxy for leadership behavior, we analyze and predict how managers’ actions are affecting their team, and offer suggestions for how to improve. At no point do we attempt to stand in as a replacement for a manager, or a talent leader. Rather, like a real-life leadership coach, Cultivate offers tips and suggestions that a manager can choose to take, or not. This is the kind of personal experience employees expect from their talent leaders, scaled with A.I. And it doesn’t need to stop at learning and development. A.I. also has high-potential to impact other aspects of the employee experience, from interviewing and on-boarding to performance reviews and off-boarding. Looking Forward There is no doubt that A.I. is changing the world — and the job market — as we know it. Industries will be disrupted. Jobs will be lost, new jobs will be created, some jobs will never be replaced. Ethical dilemmas will be raised. They already are. The degree of difference between aspects of human intellect and intelligent machines will become smaller. However, with careful consideration for A.I. design that creates a sense of partnership between humans and intelligent machines, A.I. isn’t a force to be feared in the workplace, but embraced. 作者:玛格丽特托马兹祖克 About Cultivate Cultivate helps companies leverage their digital communication data with A.I. to extract important organizational learning and unleash leadership potential. For more information on what we are doing at Cultivate, check out our website. 英文也比较简单理解,就不翻译了~
    新创
    2018年07月04日
  • 新创
    与玛氏公司合作,仟寻上线招聘机器人“iMars小助手” 来源/36氪 文/徐宁 日前,玛氏公司和仟寻MoSeeker联合发布线上招聘AI程序——“iMars小助手”。仟寻MoSeeker创始人兼CEO王向导告知,“iMars小助手”利用的是仟寻自主研发的MoBot智能聊天引擎,其背后的数据库积累了数百万条候选人提问的历史记录,近百条意图信息,等等。当应聘者通过文字或者语音提问时,“iMars小助手”可以先语音识别转文字,然后再识别聊天意图,给出相应答案。同时,引导候选人完成应聘、面试等相关准备。对于候选人来说,iMars小助手相当于应聘前期的私人小助手,通过了解候选人感兴趣的职位,帮助候选人搜索和匹配合适的岗位,回答申请和面试中的各类提问,该技术在辅助应聘者完成申请流程的同时也为应聘者提供随时查看职位申请进展的功能。 36氪曾报道,“仟寻”是一款基于微信的 SaaS 移动招聘系统,主要功能包括职位的移动端发布、传播和申请,以及基于社交关系的员工绑定和内部推荐。仟寻系统记录企业和用户端所有的发布、传播、申请和入职数据,同时可以与企业现有的 ATS(申请追踪系统或企业招聘系统)系统整合。公司于2018年1月完成了1500万美元的B轮投资。 而玛氏集团是一家销售额超过350亿美元的跨国公司,旗下食品品牌包括M&M’s®、士力架®(SNICKERS®)、德芙®(DOVE®)、益达®(EXTRA®)等。除了主营食品业务,码氏还成立了Next Generation Technology团队,利用AI、AR、ER、ML(机器学习)等技术辅助公司发展。 据悉,本次“iMars小助手”的推出则是玛氏中国服务中心、玛氏亚太区数字化及AI创新团队和仟寻MoSeeker联合研发。
    新创
    2018年07月04日
  • 新创
    构建聊天机器人,「Leena AI」想帮 HR 回答“年假还剩几天”等琐碎问题 来源/36氪 文/陈绍元 将 HR 从琐碎的员工事务沟通中解放出来。 HR 和行政人员需要解答内部员工大量的问题,包括“年假还有几天”、“怎么报销”、“怎么请假”等。这些问题其实都有明确的答案,但 HR 需要分别答复,或许还要登录特定的系统、查看特定的文件,然后将标准答案回复给员工。如果将这些任务都交给AI机器人来解决呢? Leena AI 是 Y Combinator Summer 2018 课程的成员,希望通过构建 HR 机器人,来即时回答员工的各种问题。 Leena AI 的 HR 机器人通过集成到公司现有的人力资源管理等系统中,例如 Slack、Workplace、Workday 等,实现数据库的自动化更新以及针对HR的一些常规问题的查询。 HR机器人可以集成到现有的人力资源管理等系统中 员工可以向 Leena AI  的 HR 机器人询问工资、考勤、报销、审批、假期等各类常见问题,除此之外,HR 机器人还会将员工与职位导师联系起来,让导师提供建议或推荐课程。员工入职时,HR机器人会指导手续、流程。员工离职时,会收集员工反馈。 目前,Leena AI 每周都会与员工进行 1000 次对话。所有这些数据都会反馈到神经网络中,将 Leena AI 训练的更好。 在收费方式上,Leena AI 按照功能将服务划分成十多个模块。其中招聘、新人入职、员工离职模块是一次性付费,每位候选人/员工 15~20 美元。HR FAQ 自动化、差旅和费用管理、健康与保健等模块是按月付费,每位员工每月 1~2 美元。 该服务在 2017 年推出,目前已经有十几个付费客户,包括可口可乐,Pearson,Marico,RPG 等。为实现 2018 财年收入增长到 5 倍的目标, Leena AI 也希望在 IT,管理,财务,采购,销售和管理信息系统等其他行业进行探索。 Leena AI 的竞争对手是其他将科技应用于人力资源领域的公司,包括 Bash,Skillate,EdGE Networks,PeopleStrong,Darwinbox 等。其中 Bash 使用 AI 来改善人力资源流程和员工体验,其前端聊天界面也可以在 Facebook Messenger,Slack 等平台上使用。 HR 机器人的价值很明显。对于员工来说,可以让他们的问题得到及时回应,改善工作体验。 对于公司来说,可以将 HR 从重复琐碎的事务中解放出来,提高效率,创造更高的价值。更深一层,如果能将员工与机器人对话的数据,结合员工信息、工作状况等进行综合分析,或许能帮助 HR 自动观察和判断员工状态、情绪、关心问题、离职和休假可能等,从而及时采取相应的措施。 看回国内,钉钉似乎是一个非常合适的“HR机器人”集成平台。钉钉本身就具有聊天功能,并且围绕办公场景,集成了丰富的应用,包括考勤、审批、招聘、请假、会议等。这些应用以及数据可以与HR机器人无缝对接。 这样当我们想请假时,不用再找到“请假”模块进行操作,而是直接对HR机器人说一句“请假”,就自动进入了请假流程。
    新创
    2018年07月03日
  • 新创
    Google Hire重大更新!全面AI技术支持,简历筛选安排面试将大幅节约时间 综合来源/ gadgets google hire blog等 更新要点 Google Hire通过更新获得了新的AI驱动的工具 Google Hire可以更快地安排面试,并在简历中突出显示关键字 雇用1000人以下的美国企业适用Google Hire 随着去年推出Google Hire,Google通过将招聘过程整合到招聘人员,已经花费大量时间去查工具(如Gmail,Google日历和其他G-Suite应用程序),来简化招聘流程。旨在帮助中小型企业有效招聘。招聘人员表示,Hire从根本上改善了他们的工作方式,减少了应用程序之间的上下文切换。 实际上,当他们衡量用户活动时,他们发现Hire减少了完成日常招聘任务的时间 - 比如审查应用程序或安排面试 - 节省时间高达84%。     Google启动AI 通过整合Google AI,Hire现在可以减少重复耗时的任务,如安排面试,进入一键式交互。 这意味着招聘团队可以在后勤上花费更少的时间,更多的时间与人交流。 Hire中的新功能使招聘人员可以做到如下几点:   在几秒钟内安排面试: 招聘人员和招聘协调员花费大量时间在后勤管理 - 查找日历上的可用时间,预订房间,并将正确的信息汇集到预备面试官处。为了简化这一过程,Hire现在使用AI来自动建议面试者和理想时间段,从而将面试计划减少到几次点击。 通过整合Google AI,Hire现在可以将重复耗时的任务减少为一键互动。这意味着招聘团队可以在后勤上花费更少的时间,更多的时间与人交流” 谷歌在其博客文章中表示。 自推出以来,Google Hire带有G Suite集成功能,可让应用程序与Gmail和Google日历等其他应用程序同步工作。Google声称Hire可以减少招聘团队招募任务的时间达84%。 最新的更新基本上整合了Google AI,以减少做任务时的点击次数,让AI建议发挥作用。 Google Hire自动提供面试官和理想时间段,将面试安排减少到几次点击。操作如下: Photo: Google 它试图减少手工查看日历空闲时间,为您查看并提供理想的时间段。此外,如果面试官最后一分钟取消,Hire不只是提醒你,它还推荐可用的面试官,并可以很容易且快速地邀请面试官。 所以我们可以看到国内外面试安排都是一个复杂而且繁琐的事情,面试管理这块的需求也日益突出。   自动突出显示简历重点 相当一部分招聘人员的时间花在审查简历上(我们都知道这一点)。有人告诉我,当团队正在观看与Hire进行互动的人时,他们发现客户经常使用“Ctrl + F”,通过简历扫描搜索正确的面试者的技能 - 这是一项重复的手动任务,可以轻松实现自动化。 另一个常见的招聘难题是在简历中查找关键字。 Hire的AI现在通过分析工作岗位描述,或搜索查询术语并在简历中突出显示相关单词(包括同义词和缩略词)来节省手动搜索它们的时间,自动为招聘人员找到这些单词。 Photo: Google   点击致电候选人: 无论他们是筛选候选人,进行面试还是跟进录用信,招聘人员每天都会有数十次电话交谈。现在通过点击通话功能简化每个电话对话,并自动记录通话,以便团队成员知道与候选人通话的人员。它是如何工作的,Derek? 很高兴你问这样的问题! 系统会拨打您要给求职者的电话,然后当您拿起电话时,系统会向求职者拨打该号码。且您永远不会丢失您的收件箱内容,电话会录音,并且您可以在电话中记笔记。我问是否有发信息功能,市场表明,大约98%的人回复短信,很少听到语音信箱或回复他们不认识的号码。 他们向我保证,这个过程非常简单,并且您电话辛苦获取的宝贵数据将会轻松转移。   最后,现在通过点击通话功能简化每个电话对话,并自动记录通话,以便团队成员知道谁已经与候选人通话,而不是多次拨打同一个候选人。 所有那些雇员不足1000人的美国企业都可以购买Hire服务。在中国不行~~     关于Google Hire 从去年7月推出,旨在帮助中小型企业有效招聘。它允许招聘人员将工作发布到多个工作现场,跟踪申请,安排面试,甚至可以在一个平台上获得面试反馈。现在,在一年之后,谷歌已经更新了招聘人工智能驱动工具,以实现“更聪明,更快速的招聘方式”。此更新带来的新功能可以加快日程安排访问速度,为日志记录提供简单的工作,并简化相关简历,从而减少耗时。 “通过整合谷歌AI,服务现在减少重复,耗时的任务,进入一键式的互动。这意味着雇佣团队可以花费更少的时间与物流和更多的时间与人联系” 以上由HRTechChina 综合编译,仅供参考!  
    新创
    2018年06月27日
  • 新创
    SE Asia招聘平台FindWork获得200万美元的种子资金 来源/dealstreetasia 文/Mars Woo Findwork的联合创始人Kevin Williams和Allen Tan   根据公司声明,二月份在印度尼西亚和菲律宾推出的招聘平台FindWork宣布,自2017年8月以来,天使投资人Bernard Chong已经募集了200万美元作为种子基金。 由Kevin Williams和Allen Tan联合创立的FindWork试图挖掘东南亚1亿人蓝领和服务业就业市场的机会。 该种子基金将用于继续扩大其求职者的用户群,FindWork称其自推出以来周环比增长稳定在15%以上。它还将重点发展其技术团队,同时提供服务水平并覆盖用户。 “这笔资金将有助于FindWork发展其客户群,目前客户群包括菲律宾的星巴克和印尼的Alfamart等公司,”该公司表示。 该平台目前在印度尼西亚和菲律宾开展业务,自2月份以来拥有超过3万名求职者和500家公司。 FindWork计划在未来扩展到马来西亚和其他东南亚国家,并开发更好的方式来连接学生毕业生和招聘公司。 领先投资者Chong先生曾在该地区投资了多家科技创业公司,包括ASI工作室和菲律宾的Synergy88 Digital。 早些时候的报道称,东南亚共有6亿人口,工龄人口约为2亿,截至2016年底,蓝领工人约占其中的一半。 FindWork引用的数据显示,蓝领和服务行业的流失率很高,显示东南亚的可用市场超过1亿人。 FindWork加入了一些最近获得新资金的招聘创业公司。 其中,位于曼谷的创业GetLinks关闭了SEEK集团和阿里巴巴香港企业家基金的最新资金轮回,帮助科技公司寻找和招聘人才。 中国在线招聘平台Liepin.com的运营商Wise Talent Technology Services Co于4月份提交了在香港进行首次公开招股(IPO)的招股说明书。 在向香港交易所提交的文件中,该公司表示计划在未来两到三年内利用新资本提高其研发能力,聘请更多工程师和数据专家,并增加IT投资。部分资金还将用于对其业务进行补充的资产和业务的潜在收购或投资。
    新创
    2018年06月27日
  • 新创
    伪程序员做的简历小工具,竟进了硅谷第一孵化器 Y Combinator 来源/ 朱英楠David “简历这个事情,我觉得就不用做了。” “你们这么好的团队做这个可惜了,应该做些高频的场景。” 对于投资人来说工具类产品已经很不性感了,简历更是低频工具。 带着这样一个不吸引人的产品,WonderCV 在硅谷通过了三位 YC 合伙人的面试,收到了录取邀请。     作为全球创业孵化器的鼻祖,Y Combinator 在 15 年间孵化出了 Airbnb、Dropbox、Reddit、Coinbase、Stripe 这些科技独角兽,整个 YC 的 portfolio 企业加起来估值已接近 1000 亿美元。 超级简历 WonderCV 是我去年学编程开发出的一款在线简历编辑器,上线 7 个月,用户以学生和 1-5 年工作经历的年轻求职人群为主,教育背景覆盖全国所有的 985/211 大学,还有超过 50 个国家的海外用户。 获得 YC 认可的故事还是那个同样的低频工具,简历,每个人找工作时即关键又痛苦的一步。     未来的工作 & 工作的未来   几乎所有的科技巨头都在布局人工智能,几乎所有的研究报告都在指向同一个未来:重复劳动会被机器所替代,人类需要从事需要创造力的工作。 自动化将会给人类带来便利和空间,但同时也会让人才市场产生一场巨大的变革。 麦肯锡的一份报告分析,中国有超过 1 亿的劳动人口需要在 2030 年之前离开现有行业寻找新行业的机会,是全球受技术革命影响最大的劳动人口大国。就业将不仅是毕业生面临进入劳动市场的问题,而是整体市场人才转型和迁移的问题。   跟正在颠覆人类劳动力的智能科技相比,求职找到工作的技术可以说是非常古典了。 找工作的痛苦不仅是因为职位变化快、信息不透明,更是因为找工作能够动用的所有工具,包括Word、Email、招聘网站,都发明于上个世纪。     可怕的是,在过去几十年间的科技革命中,这些工具不仅没多大变化,而且丝毫没有被淘汰的趋势。在移动互联网时代的洗刷下,也只是出现了更多的付费内推、虚假招聘、和刺激焦虑的知识变现。 发现这个问题的不仅是我们。 每年,YC 会推出一个“我们想投的创业想法”系列。在今年的想法里,出现了 “Future of Work” 这一项。     YC 认为,科技一定会改变人类和工作之间的关系,所以一定会出现可以帮助人应对求职上的变化的产品。 尽管和 YC 不约而同看到了时代性的机会,但在工作和人之间有无数个细分步骤可以优化和切入。在写简历,找职位,投递,面试,入职,后续的培训和提升中,我们选择了最能够标准化成为产品的,简历。 在“在行”上帮助了100多位学员解答求职问题后,我发现所有人共同的痛点和问题都在简历身上,从学生到10年经验的求职者,大部分都对写简历一知半解,不知道应该写什么在简历上,如何展示自己的能力和价值。 而市场上又充斥着大量不专业的误导信息:     于是很多人只能更痛苦的的搜索有用信息,硬着头皮写简历,然后带着不确定海投职位,陷入 “海投-没有回信-自我怀疑”的恶性循坏。 市场上其实有很多 ATS 简历筛选系统是给 HR 服务的,却没有任何工具是给信息本就缺失的求职者反馈的。迷茫的写简历、投工作,迷迷糊糊的被拒绝或者石沉大海,甚至连拿到 Offer 也不知道是因为什么。 为了给求职者拨开迷雾,我们开发了 超级简历 WonderCV。     从教人写简历的专业攻略,到自动化引导模板,每个模块都根据不同的情况给出详细的贴士和案例。写好后自动排版,并且通过自动优化简历的机器人来检查更多容易出现的简历问题,从内容篇幅到标点符号,提示求职者需要注意的各种“坑”。 最近又陆续上线了自动翻译生成中英文简历,求职信模板和邮件投递这些功能,把专业的引导全部产品化,通过降低 HR 和求职者之间的信息不对称,大大提高了求职者获得面试的几率。       YC 的投资逻辑 YC 每年有 2 期,如今每期都会有 7000 多个项目申请,最终 100 多个项目入驻,录取率约为 1.6%。许多早期进入 YC 的创始人都会开玩笑说,进 YC 已经比进哈佛还难,换做是今天他们也不一定能进。 面对这么多申请项目,YC 的筛选标准和传统 VC 相比,更在乎的不是风口、流量、资源,而是更基本的: “Make something people want.”   |  贴近用户,剔除伪需求   YC 长达 30 多个问题的申请表格里,有 6 个是与创业 idea 相关的,比如 “你是否有相关的行业经验?”,以及 “因为市面上没有你们的产品,用户正在用什么其他的方法解决你想解决的问题?” 其实这些问题的核心是辨认伪需求。 Dropbox 是 2007 年暑期的 YC 项目,提供在不同电脑/平板/手机上文件同步和协作的解决方案,今年 3 月纳斯达克上市,目前市值约 120 亿美金。 但在早期,Dropbox 不断被投资人质疑产品的可行性,因为市场上有着无数竞品,但用的人寥寥无几,大部分人还是用 U 盘和邮件在传文件。 为了验证用户需求,Dropbox 做了一个 4 分半的产品演示,详细展示了 Mac/Windows 之间无缝、实时的文件分享。这段视频上线后的几周内,就成功带来了 7 万个测试用户,充分证明了 Dropbox 所瞄准的需求,也顺利帮助他们获得了红杉资本的 A 轮投资。     WonderCV 和 Dropbox 碰到的问题很类似:市面上有无数个写简历的产品,但绝大多数人还是在使用 Word 编辑简历,为什么会有人用我们的产品? Word 的短板明显:功能繁多,排版耗时,而且手机上很难用。而大部分的“简历网站”,却都是以卖 Word 模板为主。 对于已有很多产品服务的需求,10 倍以上的效率提升才会对用户有意义。 所以 WonderCV 要成为 Word 的替代品,需要做到比用 Word 写简历好用 10 倍。 这也让我们从一开始就意识到,要挖掘很多 Word 没有做到的东西,把他们做到极致。   比如自动排版。在 Word 里面用户经常花大量时间把内容调到一页纸的长度,我们用一个按钮自动化了这个过程,也是至今最受欢迎的功能之一。   还有简历内容自动检查。很多人会在简历上写无用的信息,却遗漏掉一些 HR 最在乎的关键点,WondeCV 都会自动提示:   加上人工智能,通过语义识别提示使用者,哪些语句有优化空间:   在手机上也可以使用这些功能,并且写完简历无需下载、跳转,就可以直接发送邮件出去,或者分享到微信中。 怎么知道我们做的这些事情是否解决了用户痛点? 一方面是用户提供的直接反馈,另一方面我们持续在做 NPS(净推荐值)调研:   在最注重用户体验的互联网行业里,NPS 的平均水平大约是 48 分,苹果的满意度是 65 分,而 WonderCV 的用户满意度达到了 68 分: 这个分数意味着 8 成的用户都会给 WonderCV 打 9 - 10 分成为推荐者,而我们最常收到的用户评价不是满意,而是惊喜。   寻找真正解决问题的方案 今天估值超过 310 亿美金的 Airbnb,是全球估值最高的未上市互联网公司之一。2009 年冬季,在 Airbnb 入驻 YC 的时候,发现在纽约的租房订单增长异常的缓慢,原因是这些房子的照片都是用户用手机随便拍的,所以没有人愿意租。 YC 创始人Paul Graham(人称“PG”)当下抛出了一个完全无法想象的解决方案:让整个Airbnb团队飞到纽约,租一套专业的摄影设备,挨个帮这些房主拍照发到网上。 当 Airbnb 的团队这么做之后,效果是颠覆性的:   几周内,Airbnb 在纽约的营收翻倍,并在第二年发起了一个全球范围内的“摄影师计划”,从 2010 年的 20 个摄影师一路发展到 2012 年的 2000 个摄影师。 今天在 Airbnb 上的大部分房源,都是由专业摄影师团队拍摄。   Airbnb的收入在摄影师服务推出后大幅上涨,转化率提高了2.5倍,平均一个业主每周可以多得$1,025美元的收入 这种做法其实就是 YC 最经常给出的一条建议:Do things that don’t scale. 我对这句话的理解是不要过早的去扩大规模,而是贴近问题,去寻找真正的解决方案。 在 WonderCV 上线之后,我们对这个问题思考了很久:   如何才能让简历获得更高的面试率,以及面试通过率?   和 Airbnb 一样,WonderCV 需要在一个两端市场里提高促成的效率和概率,将 HR 想看到的信息过滤出来,通过帮助用户提升简历质量,让招聘方更愿意提供面试机会。 面试结果是由招聘方决定的,所以我们找到 40 多个在各大互联网企业和 500 强的HR、业务招聘负责人和猎头,花了 2 个多月时间展开了访谈和调研。通过把各式各样的简历展示给他们,然后进行打分、排序,观察和访谈他们是如何对简历进行筛选的。   结论很快就出现了:信息充分、排版简洁的简历更容易获得面试机会。   HR 对简历的最大诉求是 “快速找到信息”。很多 HR 甚至告诉我们,希望收到的简历都长一样,筛选候选人就可以更高效。 “如果同样的信息固定出现在简历的某个地方,比如所有的学校和公司名称在左边,所有的日期在右边,那么筛选时就方便多了,也不容易遗漏关键信息。” 猎头的痛点更为明显,许多猎头公司会直接将候选人提供的简历废掉重写,花费大量的人力复制黏贴简历内容到统一的专业简历模板中。 这让我们从一开始就放弃了设计模板,只提供一套专业的简历排版,引导求职者更关注简历的内容,这样为招聘方提供了更多便利,也让我们的用户获得了更多成功的面试。 我们产品推出后受到了大量 HR 和猎头的好评和推荐: 尽管一部分求职者还是会因为模板 “太简洁”“性冷淡” 而流失,但使用 WonderCV 的用户都得到了非常好的求职结果,最终提高了用户满意和忠诚度。 从大学生找实习,应届生找全职工作,海归回国/海外就业,工作几年后的涨薪跳槽,我们从各个渠道获得了非常完整且一致的认可   |  懂技术的创始团队   名校、大公司、创过业、有过失败经验,这些是投资人给我的标签和加分项,而团队集合了求职、招聘、咨询、IT 行业的专业人才,也让我们更有说服力。 2016 年底,我跑去从零开始学编程。很多人觉得我有病,得治。好几次聚会上会有朋友把我拉到一旁,劝我就算不想做 PE 了也可以试试 VC,或者去 BAT 工作,积累一些人脉和资源,对创业更有用,别学编程了,瞎折腾。 但我全当了耳边风。 因为从看得懂一点代码那一刻开始,我就明白了懂技术的重要性。   创业早期的产品几乎天天都在变,创始人如果缺乏对技术框架的基本理解,对开发的所有决策的判断力就等同为 0,这样创业很容易让一个“小错误”影响进度。时间成本和弯路对于大企业里的小项目可能无所谓,但对于创业公司来说,基本上就是生和死的区别。   懂技术对我们带来最大的好处,就是少走弯路。而另外一个好处,就是不用招太多人。WonderCV 现在有网站/ iOS / Android / 小程序等全线产品,而我们的技术团队只有 5 个人。   当然,这和我所学的编程语言关系也很大。我们的产品是用 Ruby on Rails 开发的,有大量 YC 项目和知名互联网公司也是使用 Ruby ,包括 Airbnb、Twitter、Kickstarter、dribble、Shopify、Groupon、Hulu,以及刚被微软以 75 亿美元收购的 GitHub。     PG 曾在一篇博客中提到,创业公司选择的开发语言,在一定程度上直接影响了公司的文化,这也是我非常认同的。因为大公司使用的语言(如PHP、Java)会很容易招来习惯在大公司工作的人;而跟 Ruby/Rails 类似的全栈框架(Python/Django、JavaScript/Node.js)则会吸引到更多学习能力和上进心更强的开发者。   早期团队中加入的每一个人我们都希望具有这样的“开发者”精神,并且热爱我们的产品。目前我们的 4 个暑期实习生有 3 个都是 WonderCV 的忠实用户,其中 1 个用超级简历拿到了滴滴的产品实习 offer,但是却选择了加入我们。   我们正在招募更多人才,技术、产品、运营,如果你有一技之长,愿意和我们一起把更好用的产品带到世界的各个角落,那就用 WonderCV 写好简历,直接点击投递按钮,发送到hr@wondercv.com 的邮箱吧。   期待你的加入。   |  谢谢 YC 创业的成功率可能只有 1%,但对于那 1% 的人,他们的成功率是 100%。 作为被 1.6% 录取率的 YC 认可的团队,我们将用简历工具开始重写人和工作的关系,帮助更多人“无痛”找到自己喜欢的好工作,并且会继续花尽所有精力将自己变成那 1%。  
    新创
    2018年06月26日