• 观点
    SaaS公司要想获得爆炸式增长的6个秘诀     编者按:Arkenea LLC是一家“以程序员为服务”的初创公司(与“以软件为服务”相对应),目前已经获得了风投资金支持,现处于快速上升通道中。 Brad Feld(美国著名风投家、创业者、畅销书作家)曾经提出了一个所谓“40%法则”的标准,用来评判一家初创公司是否处于健康、快速的发展阶段。所谓“40%”,即该公司的当月增长率加上该公司利润增长率应该起码等于40%,这样才算是一家优秀的SaaS公司。换句话说,如果你现在的增长率是20%,那么你当月的利润增长率就也应该是20%;如果你现在增速是40%,那么这个月是可以接受没有利润这个现实的;如果你现在增速是50%,你就可以接受亏损10%的现状。如果这两个指标相加之后已经远远超过了40%,这说明你在这条创业路上干的尤为不错。   那么接下来问题来了,你该如何达到这样的增速呢?有哪些因素能够决定这些数字呢?下面进入本文的正式篇章:   1、招聘最优秀的人,以最快的速度!   一般来说,百分之九十九的SaaS初创公司都会把精力放在三种核心角色上:工程、销售及客户支持。这三种人决定了你视野中的问题能够在多快的速度得以解决,解决问题的方式能有多高效,以及市场给予的反馈能否真正有效地得以利用,在下一次产品迭代更新中体现出价值。 无论哪一种角色的招聘,必须以超级高效,快速的方式完成。永远记得,不仅仅是要招聘来能够解决问题的最优秀的人才,而且他还要进一步地帮助你去打造跟客户之间更优质的关系。   2、产品的迭代更新,以最快的速度!   在增长之路上,你通过产品持续不断的更新,以及妥善及时的Bug修复来满足现有客户的需求,然后当你得到了进一步的反馈信息时,再开发新的功能,并不断地将产品向你刚开始设想的愿景推动。在此基础之上,然后想想你在面对下一个问题,又或者是下一次产品迭代的时候该以多么创新的思路来解决, 上述的内容全要靠你现有的团队来实现,通过合理分配时间和资源来一步步的完成。往往你会受限于身边的资源,你也许会考虑使用DAAS(以程序员作为服务)的平台,快速招聘能够应付某个具体任务的程序员,来弥补目前人才团队中的空缺。   3、销售能够解决一切问题   Guy Kawasaki 有一句名言:“销售能够解决所有事情”。他是这么说的:“只要你有销售业绩,现金就能如流水一般涌入;而只要你有现金流,那么你就有时间来整合团队,技术,以及你的营销方式。另外,你的压力将不会那么大,因为客户是在源源不断地将钱送入你的保险箱,最后,你的投资人不会烦你,因为他们需要把精力放在那些销售业绩并不怎么好的公司,另外他们也不想横插一杠子,在原本就很好的业绩上面凭添变数,回头一旦出现什么状况,你会把锅甩给他们的。” 在SaaS公司不断增长的过程中,销售真的是非常重要的一个因素。如果只是依靠“内生营销”,你不会得到最理想的结果。你的SaaS公司必须投资于”外向销售“,同时不断地完善提升营销策略,将影响力波及更远的地方,覆盖更广阔的潜在客户人群。   就比如说HubSpot,它还专门配备了一个外向型销售团队。有两种方式来达到这一点。其一是将内部的一个团队培养起来,这当然投资比较大,如果你是第一次做外向销售的话;第二种方式就是专门请一个专业的公司机构,就比如说GravityLeap这样的公司来帮助你快速上手。   4、以正确的方式定价   “免费模式并不简单,如果你真的摸到门路了,它能够给你带来惊喜!” HubSpot增长团队负责人Brian Balfour在接受采访时这么感慨到。   定价是一种非常敏感,也非常具有决定意味的手段,它能瞬间让人们血脉贲张,又或者瞬间让人们掉头离去。   根据Brian Balfour的观点,有四个非常明确的因素能够促使免费定价模型特别适合于SaaS公司。   第一点,是要意识到你是在向个体进行营销,如果你成功地将某个想法通过“免费”的方式植入到他的脑海中,那么这个模式就会在他那里生根发芽,他会自行将产品传播开去的。很多公司在面对个人的时候,拿出来的是B2B的那一套销售办法,这往往行不通。   第二点,你的产品应该让用户很快地看出价值来,如果你的产品需要持续不断地学习了解,还要不断的设置才能看出价值,那么免费模式在这里就不成立。在这样的产品上,你最好提价。   第三点是你应该有一些第三方推荐,还有一定的传播性。那些享受免费服务的用户,他们有可能不会转化成为付费用户,这个时候他们回馈于你的方式并不是像付费用户那样为你掏出真金白银,而是采取了另外一个途径:也就是为你带来更多的用户。   最后的一点,从长期来看,你需要设计一条路径,让个人账户能够逐渐转型成为团队账户。因为这才是你的产品真正起飞的拐点。Dropbox和Evenote都是非常好的例子,他们都是从个体用户切入市场,最后扩张成为公司团队级产品。   5、降低流失率   从缓慢的启动,到快速的发展,一个公司所能走的捷径就是在产品将不断把流失率降下来。   ContentMarketer.io的联合创办人Sujan Patel这么说道:“让人们持续不断地回到产品当中,又或者是所谓的SaaS流失率问题,其实跟产品市场契合点一毛钱关系都没有。仅仅是因为现在的人们都太忙了,眼前的东西太多,他们都眼花缭乱,总是被亮光闪闪的东西吸引去注意力,往往他们在使用产品的时候都是走马观花,如果5分钟之内他们没能理解这个产品,他们掉头就走,不带有一丝犹豫。”   他补充道:“人们忘记回来其实并不是问题,而你是需要在后续不断的利用各种方式,比如发邮件来叫他们回来看看的。所以我强烈建议你开启与客户的谈话之前,准备一套‘email drip 推广方案’。”   6、给免费模式上面附加价值   对于SaaS公司来说,如果一个核心产品平台主要是停留在以Web为基础上面,提供“附加值”的移动App能够很大地提升你产品的粘性。在SaaS领域中,附加值App上最典型的例子莫过于那些给客户提供”表盘“的初创公司了。   作为附加值而存在的移动App可以很好的获得市场认可,开发的方式最好是”以程序员为服务“,这样时间最短,效率更高,成本也能有所控制。   作者丨Rahul Varshneya  (Arkenea LLC 的联合创始人) 编译丨拓扑社  原野 http://tobshe.com/2016/04/05/saaszengzhang/#sthash.HYLXgPnk.dpuf
    观点
    2016年04月06日
  • 观点
    创业公司如何培训新员工   “Sink or swim。(自生自灭)”这是Sean对我说的。(Ooyala的首席技术官,前谷歌创始人之一)这并不是多么鼓舞人心的箴言,然而这句话在在我初探创业世界时,给我的新员工培训理念埋下了种子。没有什么能救你——只能靠信念苦苦挣扎,然后竭力生存下来。 从我在Ooyala(当时有30人左右的一个创业公司) 的第一天,我就挣扎于含有技术缺陷和增强文档的代码库,还是用一种我并不熟悉的有点像Java的语言ActionScript。我用两周的时间来实现一个已经承诺给视频出版商的功能——传输在线视频。为了赶上deadline,我需要学习ActionScript,熟悉Ruby on Rails,Flash视频和图形库,同时每天处理着像“QQQ”一样的让我脑袋大的变量名和不时出现问题的“load2”和“load3”函数。 我在那一个星期就这样硬着头皮工作70多个小时,完成了这个功能。“Sink or swim”的入职经历我铭记至今,那真是我压力最大和最变态的工作经历。在最开始的日子里,我不断地考虑自己离开舒适的谷歌而迈入创业的世界是否是个正确的选择;最终我还是适应了新环境,在其他团队成员的帮助和无数次的工程实践下,早期含义模糊的代码早已消失不见。在那个团队两年的工作时间里,我从这个专注的团队中学到了很多,但是毫无疑问,新员工入职本可以是个更流畅、更积极的体验。 后来到了2010年8月,我又加入了已经拥有了12个人的团队Quora,这次的新员工入职没那么艰难,除了Charlie Cheever留给了我几个前期bug,但由于没有付费客户,所以没有时间压力,只有自我要求。新员工培训其实就是我去问一些问题,或许再做一个或两个特别的讨论会。在Ooyala的入职经历和在创业公司的两年高强度工作,让我作好了充足的战斗准备,所以相比之下,在Quora的入职过程相当轻松。 我的亲身入职经历后来启发我在Quora构建新员工的培训计划,计划的详细内容可以参考我在2012年11月写的《Quora的工程师新员工培训是什么样的?》   在新员工培训上投入时间真的值得吗? 创业公司有很多事情要做,尤其是要在资金用尽之前,需要争分夺秒地打造一个产品来获取用户。所以第一个问题是,把宝贵的资源转移到新员工培训上,这真的值得吗?许多初创公司不做或推迟新员工培训,他们仅仅依靠新人自己去发现问题,解决问题。 对于这样的入职培训,会出现以下问题: •淘汰了一些优秀的员工,实际上了他们只要多一些指导,就能为公司创造更多的价值并留下来。这对于那些在招聘下很大功夫的公司是个嘲讽,注重招人,却不重留人。 •不能很快的识别出低效率的员工,因为你没有足够的机会来评估他们的工作或者因为你觉得他们只是这一次没做好。 •降低员工的生产率,因为他们真正入职所需要的时间太长了。 •新员工的压力不断增加,幸福感不断下降,尤其是对那些没在创业公司工作过的人。   招的人越多,风险就越大。特别是当你招聘渠道偏向于缺乏经验的员工时,比如大学毕业生。 随着一个团队的发展,非正式的入职培训慢慢变得问题百出。对于同一个概念,不同的员工在不同的时间有着不同的解释,缺乏一个标准化的新员工培训流程。对于那些非系统的零散的解释,很容易遗漏许多重要的信息。工程师可能在这个过程中对一些关键问题不甚了解,这会让他无法完全理解核心代码的机理,降低工作效率。又或者,因为没有沟通清楚,新员工可能需要花太多的时间学习新事物,一个月后才能真正为公司创造价值。创业公司刚启动时,没有很多的东西需要去学习。但作为一个公司,一个产品和一个代码库,随着它迅速成长,内容和复杂度不断增加,在没有任何指导的时候,一个新人对新事物的学习变得越来越困难。 新员工培训是一个指引他们学习和明确公司价值观的难得机会。设计一个好的新员工培训计划可以增加新员工入职上手的效率。所以,建立一个高效的新员工培训计划可以说是一笔一劳永逸的投资。   如何设计一个新员工培训计划 在Quora期间,我带领新工程师的培训项目并直接负责工作指导、组织和安排新员工培训谈判、编撰培训材料,并开展了导师培训班。在Quora的新员工培训计划开始后,在2011年的12月,此时Charlie 和我意识到我们可能要有10多个全职程序员和实习生即将入职。我们的团队当时只有不到30人,其中包含14个工程师,所以如果没有一个好的入职培训,事情很容易变得一团糟。 在第一次创建Quora的入职培训时,我明白我一定要让入职这件事变得比我当时经历的要简单、顺利。在确定培训材料、交流项目和导师制度之前,我首先为入职培训设定了一系列的目标。大家根据自己的经历分享了他们对入职培训的建议。我也联系了其他公司的工程师们(包括我在Ooyala的朋友们),了解他们之前是如何入职和开展工作的。 1、尽可能快得让新员工成长 创业往往人手紧缺,而培训新员工还要再占一部分人力资源。这就要求入职培训的效率一定要高。长期来看,这既有利于公司的发展,也迎合新员工急于证明自己的心理。 一种快速提升新员工能力的方式是导师制。我们首先达成共识,强调入职培训的重要性,然后让老员工花费他25%的时间去带新人,尤其在前几周的时候。导师要做的事情有很多,包括新人最初的代码评审,挑选合适的项目,指出需要学习的技能 ,结对编程的技巧,工作次序的优先级,或者教他们如何高效地团队合作。 我在Quora时,辅导了很多人。入职第一天,我就会告诉他们,培训他们是我的第一要务。 这让我们彼此建立了共同的目标——尽可能快的帮助他们成为公司的一员。往后,他们会毫不犹豫地问我任何问题。 2、让新员工接受公司的文化和价值观 每个创业公司的文化是不同的。虽然新员工可能已经从招聘面试和宣传材料中了解了一些。但入职培训本身就是一个让他们了解公司文化的机会。这些价值观可能渗透在工作的方方面面,比如完成业绩、数据处理、打造高质量的产品服务等。 以Quora为例, 公司文化的了解是一个很自然的过程。但实际上,我们给新员工的学习量太大了,尤其对于应届毕业生们。为了确保新程序员们能跟上公司的节奏,我们让新员工在第一天的时候只做一些简单的事情,比如搞定一个小bug,实现一个小的功能。极力简化入职的第一天就是为了让他们有足够的时间和精力适应新环境,只是设置好开发环境、修改一些代码、做一些运行测试。这也意味着导师需要做一些准备,找一些适合新员工的任务。我通常建议导师选择一个一天能完成的启动项目,这样即使项目未能按时完成,导致工作延期,也有机会在一周内弥补上。 3、教给新员工最重要的东西 随着公司发展,产品、团队和数据库都会变得越来越复杂,这意味着新员工要学习越来越多的东西。从我的经历来看,那些对基本的关键知识掌握的好工程师都表现的很优秀,无论他们是自学成才的还是因为有导师的指导。一个好的入职培训一定要保证每个员工有坚实的基础知识。   在Quora,我们使用以下两种方法 •在前两个或三个星期,我们会安排一系列新员工会谈,这些会谈介绍了代码库,解释git的数据模型,演示调试和分析工具,或是涉及各种话题。最重要的(如介绍代码库),我会亲自为每一位新员工安排,即使是只有一个人。 •写一个codelabs来解释公司的抽象数据和必备工具。Codelabs是我从谷歌借用来的概念。codelab是一个文档,它用来解释一些抽象问题的原因以及它的解决方法,遍历相关部分的代码库,然后提供了一组练习来验证的你对其的理解。这实质上是一套代码培训系统。我花了三天时间完成第一版,然后派其他人去完善那些每个程序员必备的代码知识。   这些投资主要涉及前期,是一件一劳永逸的事情。后续只要花费少许精力更新部分代码即可。 4,让新员工融入公司的社交圈 刚入职时,你很有可能花费很多时间来和同事搞好关系。所以,帮助新员工快速融入团队很重要,尤其对于内向的人。 在Quora的早期,我们主要依靠导师帮助介绍新员工。后来,团队的一些成员开始组织小组午餐来为新员工提供更多机会去认识他人。分批次的集中培训新员工,也让他们之间互相熟悉,并对公司更有归属感。 以上提到的只是一些例子,为你设计入职培训提供参考。随着公司的成长,新员工培训的目标也可能改变。例如,在Facebook(当然,它现在不是创业公司了)新员工培训时,每个程序员会通过一个名为Bootcamp的训练营选择自己心仪的技术团队。之后只要通过一个与该团队工作相关的工作测试即可。但Bootcamp这个计划可不是Facebook一成立就有的。 重要的是意识到建立新员工培训计划是一个反复迭代的过程。也许开始的时候,你只教她如何设置开发环境,这样他就能在第一天改改代码了。也许你以后意识到并非所有培训计划都有用,培训过程中你可能一遍又一遍介绍同一个代码库或架构,那样还不如专门针对它开一节课。 无论你在哪家公司设计入职培训,都要想想自己的入职经历并多问问他人,勤加思索,建立一个高效的入职培训。想想新员工会遇到的困难以及解决办法;想想有什么概念、工具是你认为应该更早学到的。一旦你有了点子,那么去尝试最有价值的那个,再接受新员工和同事的反馈,看看它到底有没有用。 取其精华,去其糟粕,不断迭代,希望新入职的员工不会像我在Ooyala那么痛苦!   作者:董飞 链接:http://zhuanlan.zhihu.com/p/20670529原文发布:theeffectiveengineer,作者:Edmond Lau 译者:杜挺@demo++
    观点
    2016年04月06日
  • 观点
    PayPal CTO是如何招到最顶尖工程师的 (PayPal早期团队,最后排左一是Levchin)   Max Levchin(PayPay黑帮中的军师)在硅谷创立和投资过多家技术型的公司,包括PayPal、Slide、Affirm等。在招人方面有他独特的一套,结果是有目共睹的。在这次First Round CEO Summit采访中,Levchin分享了他的招人理念。   如果犹豫,就不要犹豫 早期员工的招聘可以说是创始人最重要的事了,这些人形成了公司的文化和远景,并且很难改变。在PayPal时,Levchin在招人方面极其严格,尽量避免犯错。在招聘流程上,如果团队里有一个人对候选人不满意,他们就不发offer。   Levchin分享到:“有些传闻是说我拒掉某些候选人仅仅是因为他们在面试中用词不当。。。,我承认我们这么做可能会漏掉一些好苗子,但我们从不把差的招进来。”宁肯漏掉一个超级明星,也好过招进来一个毁掉公司的人。正如电影《浪人》中的台词,“如果犹豫,就不要犹豫”。   招聘伟大员工的技巧 Levchin和他的早期团队只招聘认识的人,这样就不需要花费大量的时间做痛苦的抉择了。前10个工程师来自于Levchin所在的伊利诺伊大学,前5个商务员工来自于Peter Thiel(PayPal黑帮教父)所在的斯坦福大学。严格的面试和LinkedIn(PayPal比LinkedIn成立的早)上的介绍是一种好的人才筛选方式,但万无一失的方式还是招聘那些共事多年,确认很牛逼的人。   直觉来说,你可能觉得不可能通过自己的关系网组建一个完整的团队。有时确实是这样,但Levchin的经验是,几乎每个人都有比他们自己所能想象的更多的优秀人选。真正的挑战在于,大多数的创始人不认为自己能够把那些天才员工吸引到团队中来。   Levchin老早就认识到不要犯这一错误。PayPal刚成立时,他坐下来并创建了一个想要招聘的潜在工程师清单。如果搞定一个,就把他的名字写下来。Levchin重复着这一过程。“Peter Thiel让我坐下来并写下我认识的每个聪明人,这个清单大概有30个人名,结果我们招来了其中的24个。”   不要因为你觉得吸引不过来,就不把这人放在候选列表。“我们强迫团队里的每个人写下他们所认识的聪明的人,他们确信这些人不会来。我们像女鬼一样站在候选人身后,最终逼他们就范(加入PayPal)。”   思路不一致会拖慢进度 对于初创公司,速度是最有力的武器。总是有大公司拥有更多的工程师、设计师、分发渠道和其它资源。但只要你速度够快,你可以更早胜出,这是你的竞争优势。问题就是:创业公司如何跑的更快?   我们都知道单打独斗是最有效的方式了,这样可以减少沟通的代价,不用花时间让大家思路一致,不用为公司的愿景而争论不休。毕竟,你只要说服你自己。然而,绝大多数的产品都复杂到除非建个团队才能搞定,保持速度的关键就是团队小而精。   一般情况,思路不一致会大大拖慢团队的速度。“如果你的团队来自5个不同的计算机院校,其中一组喜欢Java,另一组喜欢PHP,还有一组觉得PHP很垃圾,Python才是最优雅的,这时你就只用争论不用干活了。”   如果一个团队需要浪费一天时间来讨论到底选用哪个Python版本,那就不可能快得了。不是说Python的版本不重要,而是在创业早期最正确的工具显然没有最适合团队的工具来的必要,用的熟是第一位的。   当然,思路不一致在公司大了之后是很有用的。“当你切入一个未知的新领域,你又没有相关的背景,这个时候就需要不同视角的人一起和你讨论。这时,多种思路就非常有必要了。”听起来很简单,但把握这个平衡点很难。   让公司与众不同 Levchin发现那些最顶尖的工程师总是希望在工作和面试过程中被挑战。“我们塑造一种很难进入的形象。这样甚至导致很难找到能够面试的人,我们宣称PayPal的门都很难进入。我们要求候选人有190的智商,加上顶级的编码能力,外加其它五项要求。那些最聪明的人看到之后会说,‘挺有挑战,我想去面试一下,向那些平庸之辈证明我更牛逼一点。’当然,面试结束时,我会说‘也许你想要一个offer,你太优秀了。’”   作者:董飞 链接:http://zhuanlan.zhihu.com/p/20667060 原文发布FirstRound,译文:神策数据创始人&CEO 桑文锋
    观点
    2016年04月05日
  • 观点
    人人都在说SaaS热,客服领域里的SaaS巨头可能长什么样呢 就在移动浪潮铺天盖地席卷了C端市场后,企业级软件市场也从传统PC时代装机卖软件模式过渡到SaaS模式,最近几年,中国SaaS市场以30%的年复合增长率保持着高速增长,企业级SaaS服务的风口正在积聚力量,快速渗透企业办公服务所涉及的市场、销售、客服、沟通、财务、采购、HR等各个层面。 作为其中垂直细分市场,SaaS客服也已全面打开。 SaaS客服列队成三大阵营 我国SaaS智能客服市场的发展除了人力成本的上升、移动互联网技术的普及和移动社交场景的涌现以及自然语言处理与机器学习技术的进步外,更多的是由特殊的时期和国内环境共同影响带来的机会。 首先,企业客服市场潜力被释放。客服一直是企业工作中不可或缺的组成部分,易观预测到2017年,中国SaaS客服市场交易规模将增长至680亿元人民币,这一方面是因为企业基数大,根据工商总局统计的数据显示,截止2015年底,国内注册有25万家大型企业、中型企业350万家、小型企业150万家以及微型企业1500万家,他们对客服的需求旺盛而迫切。另一方面是因为客服工作变得越来越重要。一份来自Zendesk的统计报告显示:78%的受访者将客户服务列为影响供应商信誉的第一要素;62%的B2B和42%的B2C用户在享受到好的客户体验后会购买更多的产品;66%的B2B和52%的B2C用户在遭遇糟糕的客户服务互动后会停止购买产品;88%的人在购买决策时受到网络评论的影响......在市场竞争白热化的态势下,企业销售的不再单单是产品,用户更加在意与产品配套的客户服务。 其次,国外巨头挤不进来。这一是因为国家有明确的政策监管,SaaS业务需要IDC托管服务,也就是国外企业要想在中国境内从事类电信服务,必须在国内有商业存在,且占股不得超过51%。所以微软、SAP、IBM才会分别找了世纪互联、中国电信、首都在线合作。二是由于企业客户对用户访问和使用速度要求极高,这就要求服务器会能在本地部署,但Zendesk等创业型企业并无财力支撑服务器在中国落地,从而给国内企业留足了时间和空间。 最后,企业级市场需要更好的客服系统。当前客服行业一部分是传统电话客服软件,此类模式容易引起客服人员听说易疲劳,工作强度大,流失率高,工作效率低,客户体验差,客服投诉率高,也增加了企业人工成本。一部分是网页在线客服,虽然客服成本明显降低,但基于WEB的在线客服无法记录访客信息,无法找回客户,无法将服务流程中的发货、物流信息及时传递给客户,而且语音方式无法支持复杂业务,不利做统计分析、数据挖掘。同时随着社交媒体的快速发展,客户服务渠道呈多样性碎片化,这就要求企业客服能支持如电话、网页,微信、QQ、APP等多种渠道的接入,再加上智能手机的普及和用户习惯的养成,员工人手一部智能手机,让手机替代PC实现企业管理和信息化成为可能,以及传统企业无法享用传统昂贵的软件解决方案。于是就出现了一批如Udesk、环信 、云软、智齿等专业的SaaS客服公司。 如今征战于企业SaaS客服市场的各类平台已形成三大派系,正相争相杀。 第一派:智能机器人客服,如2014年京东推出的JIMI、2015年阿里推出的“小蜜”、网易系的七鱼云客服和云问等,它们依托最新深度学习技术,采用智能语义分析技术打造,拥有更好的语义理解能力,可以处理更口语化的问法,并且具有自主学习能力。云问目前已成为海尔商城、360、酷派商城、巨人游戏、猪八戒网等科技公司的智能客服合作商,但目前多数尚未对外商用。 第二派: IM转移到APP客服,如:环信、容联、极光IM等。他们主要区别于电话的同步沟通模式,因为接打电话时客服人员很难再完成其他任务。而APP客服模式则是异步沟通模式,客服人员可以同步地去完成其他任务,有利于在移动互联网环境下提高工作效率且符合消费者的碎片化操作习惯。 第三派:全渠道整合客服系统,如云软IMCC、Udesk、逸创云客服等。他们将微信、微博、邮件、电话、移动APP、Web、即时通讯(IM)等多渠道优化整合,客服人员只需在一个平台上就能处理所有渠道的问题。2015年5月,逸创云客服获得由唯猎资本领投的1500万人民币和金蝶战略投资的1000万人民币A轮融资。云软则首创以即时通讯消息为主要入口的SAAS客服平台,去年云软获得深圳前海鹏德移动互联网创业投资基金2千万人民币的A轮融资。 未来可期,但难点又在哪 随着更多新晋品牌的闯入和巨头的掺和,SaaS客服市场势必会在经历一段残酷厮杀后进入寡头时代,那洗牌之前,整个行业的难点在哪,致胜高地又在哪?决胜之战,其实考验的就是这些能力。 一、人与企业的连接能力,也是社交力的比拼 未来社交将链接一切,人与人,人与企业,而且移动客服是即时通讯的衍生品,也是销售渠道的一个节点,每一个节点都会聚集到一些用户,产生兴趣,扎堆聊天,在交互连接中实现价值。所以SaaS客服就不再仅仅是冰冷机械的代码及程序,而是在考验着人与企业沟通能力、企业贴合用户需求的能力。我们评判SaaS客服价值的标准就得看他连接的能力,如何将千千万万个个体与企业统一且有逻辑的链接在一个平台上,并有序的交流互动。这种社交力能让使用SaaS的人可以和外部的人、机器、设备产生连接,在创造新的价值的同时也产生了新的壁垒。 二、个性化的定制能力,也是技术沉淀的较量 如今企业客户对特定领域相关应用的需要日益增多,因为就像“世上没有两片完全相同的叶子”一样,任何一个行业、任意一类领域,不同的企业情况和需求对会不一样,通用的应用软件只能解决大部分问题,但那些细小的差异性需求能否满足又往往决定着胜负。所以这就要求SaaS客服应用能适应千变万化的行业化定制需求,能为企业提供开放的接口以及个性化定制,企业用户可根据自己的特点和需求进行自定义设置系统模块。SaaS客服领域的PK也极大取决于SaaS客户平台个性化的定制能力,也就是自己的技术积累能否满足挑剔又各有差异的企业客户需求。 三、数据准确性与客服风控的能力,也是对用户需求的理解能力 目前出于数据安全性、业务连续性方面的考虑,部分大型企业不愿意使用SaaS服务。企业客户和个人客户最大的差别之一也是对安全的要求更高,这不仅牵涉到客户信息有无泄漏,也直接影响到客户对企业的信任以及企业自身的财务、信息安全。曾经有人总结了企业SaaS选型中的五大安全问题:云计算中的身份验证并不成熟;云标准很薄弱;保密;访问所有区域增加便利性,但同时也带来风险;你并不总是知道你的数据的位置;上诉项同样适用于SaaS客服市场。SaaS客服平台要时刻提防不安全协议、基于Web的应用缺陷以及易损或不安全的证书等威胁的发生。尽管安全性与客服风控的能力说不上是加分项,一旦发生问题,就一定会给自己减分,甚至跌入万丈深渊,难以翻身。 而且目前客服中心慢慢由企业成本中心向盈利中心转变,承担起更多的营销、销售职责。这就要求SaaS客服平台对大数据处理技术以及对用户真实需求的理解能力需要上升到一定层次,能实现对客户信息数据和交易数据的分析和统计,预测并完成客户关系维护,二次销售,这无疑又加大了对数据准确性与客服风控能力的考验。 四、移动化与智能化水平的考验 如今客服场景越来越多样化,这也使得企业客服面临三大挑战:复杂多变的网络通讯稳定性、海量高并发的长连接即时消息以及平衡云端服务合理投入与高品质性能的投入产出比。SaaS客服平台若要在竞争中胜出就必须实现真正的移动化,在保证复杂网络稳定性及海量高并发长连接的同时,还能节省使用者的建设和维护成本。 而且,好的客服往往让你感觉很专业,这就要求SaaS客服平台能提供强大的系统支持,如知识库、帮助中心或自助服务中心和数据统计分析功能等,利用关键搜索、人工智能等功能实现精准理解用户问题并匹配最佳答案,并做到快速自动回复。也就是把客户结构化和非结构化的数据进行大数据分析,反向为用户服务。同时还能把重复或干扰的问题挡在客服前面,提升客服效率。这看起来是极端的企业客户需求,却是对SaaS客服平台的基本考验。 未来SaaS客服平台还可能要对客服管理数据化,完全不止于客服,而是朝着更强的综合特征发展,最终实现以客户为中心的应用一体化。 总之,目前SaaS客服市场是一个巨大的增量市场,用户的客服需求开始由目的型客服需求逐渐向场景型客服需求发展,未来将大有可为,但市场份额逐渐会向领先的厂商集中,客服企业逐渐呈现出平台化趋势,大批以销售安装型软件的传统中小型软件厂商将被迫逐步退出市场,具有先发优势并能攻克以上难题的平台将获得更多发展机会。   作者曾响铃 微信号:xiangling0815 来源:虎嗅网http://www.huxiu.com/article/143306/1.html?f=index_feed_article
    观点
    2016年04月05日
  • 观点
    顶尖科技公司在招聘中用来筛选优秀人才的秘诀 像 Google 、Facebook、Apple、Amazon 这样的大科技公司,他们每年不知会收到多少应聘简历。可以肯定的是,他们肯定都有一套自己的筛选应聘者的方法?他们的筛选方法是什么呢?它并不是你在网上能轻易搜到的大把大把的 Google 面试题集等东西。事实上,他们的招聘筛选方法远不限于只提问那些基本的算法和量子力学等方面的面试问题。为了从无数应聘者中筛选出最优先的候选人,除了面试题集之外,他们还有一套自己的神秘的招聘策略。 秘诀一:在不通知应聘者的情况下,比之前约定的时间提前或推迟 15 分钟进行电话面试 为什么要这么做?这是为了能辨别出那些为工作时刻准备着的应聘者。如果在事先约定的时间对他们进行电话面试,任何应聘者都能很好地回答你提出的一系列试探性问题。然而如果你在他们睡觉的时候、学习尊巴舞的时候或是上卫生间的时候给他们打电话过去进行电话面试,这时会怎么样呢?很多顶尖的科技公司正是利用这种方式筛选出那些在任何时候都为工作时刻准备着的应聘者。 秘诀二:要尽可能地让面试安排看起来比较混乱和无法预测 为什么要这么做?这样做是为了筛选出那些无需任何引导指南就能把工作做好的应聘者。确保面试官和应聘者都不知道面试中即将回发生什么事。通过这种方式,你能够找到那些当没有人知道接下来会发生什么事的情形下依然能表现最好的应聘者。 秘诀三:在应聘者展示的过程中,故意弄出点事故 为什么要这么做?这是为了了解应聘者在不理想情况下的应对方式。故意让应聘者在一个展示设备有问题的会议室里进行展示。如果面对这种情况,应聘者如果很从容,而且不介意对面试进行调整,这表明这个应聘者是一位比较好相处的人。在这种情形下,如果应聘者有 Plan B、Plan C 或 Plan D 的话,这绝对是一个加分项。 秘诀四:在面试过程中,故意做出很多错误的假设 为什么要这么做?这是为了过滤掉那些容易生气的应聘者。如果应聘者的上一家公司是 Twitter,你可以问:“你在雅虎做了多久?” 在应聘者纠正你的时候,记录下应聘者的口吻语气。他是否对此很恼火,还是淡然处之? 秘诀五:让应聘者解决公司遇到的具体问题 为什么要这么做?因为你确实需要有人能帮助解决这个问题。在面试中提这些问题,就多一个人免费帮你想如何解决这个问题,同时借此考察应聘者真枪实战的能力。 秘诀六:让整个面试过程断断续续在不同会议室里进行 为什么要这么做?这是为了筛选出那些即使在面试中感到不舒服,但依然满怀激动的应聘者。不要让应聘者在整个面试中都舒舒服服地在同一个会议室里完成。通过这种方式可以帮你找到那些即使在面试中感到不舒服但依然热情不减的应聘者。 秘诀七:同一个问题反复提问 为什么要这么做?在科技世界里,可预见性是一个好东西。在面试的过程中,不要担心反复提问一个问题,这是测试应聘者回答问题前后一致性的一个很好的方法。 秘诀八:双面试官同时压力面试 为什么要这么做?这是为了筛选出能够在压力情况下依然能同时处理多个任务的应聘者。有两个面试官同时对应聘者进行面试,这时应聘者能否很好地同时兼顾两位面试官的问题,并对他们的提问都能很好地回答? 秘诀九:提问一个问题后,然后开始大声敲键盘 为什么要这么做?这是为了筛除出那些在外界干扰的情况下依然保持专注的应聘者。问应聘者一个问题后,这时你开始大声敲打键盘。你可以对应聘者说:“我在听,正在电脑上做记录呢。” 不管敲打键盘干什么,大声敲就行了。观察应聘者在受到干扰的情况下是否能继续专注回答你的问题。专注在真正的工作中是至关重要的。   本文编译自:medium.com,如若转载,请注明出处:http://36kr.com/p/5045369.html
    观点
    2016年04月01日
  • 观点
    果然是他们干的!拉勾承认黑了BOSS直聘!呼吁招聘行业有序竞争! 今天,拉勾网董事长许单单发出一封致歉信,针对早前“Boss直聘指责拉勾网攻击其在苹果应用商店的开发者账号,双方并发生口水战”一事进行致歉。   事件回顾: 2月19日,Boss直聘发布声明称其在苹果应用商店的开发者账号被不明人士攻击,该人士冒充Boss直聘开发者,通过后台删除了“Boss直聘”App,导致苹果用户无法正常下载”。   声明中同时指出,当日在苹果应用商店中搜索“Boss直聘”,结果排名第一的“Boss在线招聘”应用与其无关,Boss直聘不对该应用服务品质负责。“Boss在线”开发信息显示,该应用于2016年1月29日上线,开发商为拉勾网,打开后显示页面为拉勾App。   上述声明发出后,拉勾网也不甘示弱地通过其官方微信公众号以预览模式发布题为《拉勾的三点声明:不好意思,这个黑锅我们不背》的声明,声称Boss直聘是被苹果惩罚性下架。   拉勾方面措辞激烈,称App Store对于应用扰乱苹果市场秩序的行为,一直是严惩不贷。尤其是“为了赚取眼球,某些App采用了直接套用高知名度App的标题和icon的方式,殊不知这种行为造成了严重侵权,被投诉之后苹果采取的惩罚措施相当严厉”。   但针对Boss直聘列出的拉勾网开发“Boss在线招聘”应用的事宜,拉勾网并没有在自己的声明中进行正面回应,而是转而宣称Boss直聘“长期存在其他刷榜行为”。   拉勾网董事长许单单今日发出的致歉信 过去一年多,互联网招聘行业从一潭死水变得热闹非常,创新公司们开始快速发展,行业也变成红海,竞争激烈。 在即将过去的金三银四招聘旺季,这种竞争更加激烈,2月19日凌晨拉勾网某员工通过黑客技术破解了BOSS直聘所使用的腾讯企业邮箱的管理员密码,之后又重置了Boss直聘在苹果App开发者后台的管理员密码,得到这些密码之后,该员工在腾讯企业邮箱后台、苹果App开发者后台,做出了一些不恰当的举动,给Boss直聘带来了很大的影响。因为那时公司还不知道这个事情,所以当boss直聘的公开信里提到拉勾时,我们也很生气,也于当晚发了一封《这个黑锅我们不背》的反驳公开信,我还和对方CEO赵鹏先生在媒体微信群里争吵。但当后来公司知道事情经过后,十分震惊,更感到深深的内疚和歉意。   公司发展的本意是为社会创造价值,虽然激烈的竞争下可能导致局部行为过火,创业公司也因为发展过快而管理不够细致,但任何员工的任何行为,公司都负有不可推卸的责任。因此,我们希望能及时公开的向对方表达歉意,对给公司造成的名誉影响也深感抱歉,所以希望通过这封公开信给予弥补,恢复名誉。   通过此事,也给我们敲响警钟:价值观不仅是讲出来的,更要做出来,更要贯彻下去。同时也借此呼吁在线招聘这个新领域的所有同行们,大家一起良性竞争,共同让整个行业更进步。同我一直很崇拜乔布斯和比尔盖茨那样,公司是正面交锋的对手,但企业家之间却是惺惺相惜的朋友。希望招聘行业的企业家们,有朝一日我们可以如此,成为佳话!   拉勾网 许单单 2016-03-31   HRTechChina点评:致歉信中许单单提到是其拉勾网某个员工个人行为,公司完全在这之前不知情一事,不知道boss直聘能不能接受这一说法呢!?
    观点
    2016年03月31日
  • 观点
    高速发展的机器学习,会给企业运营带来怎样的改变? 来源:猎云网(微信号:ilieyun)  编译:Mancy   毫无疑问机器学习正处于 hype curve (发展规律周期)模型的顶峰位置。当然,反响也异常激烈,仅在过去一周我就听了 20 遍这样的笑谈:机器学习就像青少年的情欲,人人都在谈论它,但是没有人真正了解它。但就在我身处的地方,有人运营了一家公司,让现实世界中大量的机器学习项目都变得可以施行,很明显,机器学习将极大程度地改变公司的运营方式。   它并非只应用于 Siri 和 Amazon Echo 这样新潮的产品,它的研发公司也不局限于我们通常认为的拥有大量研发预算的谷歌和微软。在现实中我敢打赌,几乎所有的 500 强公司都因使用了机器学习而获得了更高的效率和利益。所以机器学习身在何方呢?在这里我们介绍几款能让生活变得更美好的幕后应用。   赋予用户生成内容以价值 一般的用户生成内容有点吓人,实际可能比你想象的还要糟糕,这些内容充斥着错别字、低俗内容和完完全全的错误信息。机器学习模型可以确定用户生成内容的好坏,筛除糟糕的内容,让优秀的内容展示给别人,而这些过程都无需人工审核。   与之类似的情况还有垃圾邮件。还记得那些关于垃圾邮件的辛酸往事么?机器学习可以帮助确定哪些是垃圾邮件,而且基本上可以过滤它们。近些天,清晨检查收件箱时你会发现垃圾邮件日渐减少。希望在不远的将来用户生成内容也能达到这样的效果。   Pinterest 利用机器学习向人们展现了更多有趣的内容;Yelp 用机器学习整理用户上传的照片;NextDoor 用机器学习筛查留言板上的内容;Disqus 用机器学习来剔除垃圾评论。   更快发现产品 作为一家搜索公司,谷歌总是最先聘请机器学习的研究人员,这不足为奇。实际上,谷歌近期分配了一名人工智能专家负责搜索。但是,自 1970 年开始,搜索大型数据库和匹配关键字抓取结果的技术就已存在。谷歌的特别之处就是它知道哪一个匹配结果具有最大的相关性,而谷歌具备该能力的原因就是它使用了机器学习。   但是,不仅仅只有谷歌需要智能的搜索结果。家得宝也需要在巨大的货物目录中为某位客户不规则的浴室匹配合适的浴缸。苹果公司需要在其应用商店中展示相关应用。Intuit 需要在用户提交某一纳税申报表格时给出相应的帮助页面。   像 Lyst 和 Trunk Archive 等成功的电子商务初创公司都使用机器学习为自身的用户提供高质量的内容。其他初创公司如 Rich Relevance 和 Edgecase 会采用机器学习的策略,当商务客户浏览产品时,公司会将机器学习所获得的益处展现给他们看。   与客户打交道 你可能会注意到,近些年来,“联系我们”的形式变得更加稀少。那是机器学习简化了业务流程的另一表现。为了不让用户自行选择问题,不停地填写问题表格,机器学习会查看请求内容并将其导向合适的地方。大公司愿意在机器学习方面投资,因为他们已经看到了机器学习正向的投资回报率。   理解客户行为 机器学习亦擅长情感分析。对于不搞市场营销的人而言,舆论有时候是暧昧不清的东西,也会推动许多重大的决定。例如,一个电影工作室推出了某一暑期大片的预告片,他们可以通过获取社会的反响来看看目标观众的呼声在哪里,然后他们就会调整广告策略来让真正感兴趣的观众浮出水面。这样,工作室就不动声色地把观众带进了电影院。   另一个例子就是:一个游戏工作室近期在某款流行电子游戏的主线中推出了新的主题,然而当中却没有玩家期待的某个游戏模式。当玩家通过社交媒体开始吐槽时,工作室就能监测这些言论,找出自身的问题。然后,工作室会暂停他们的发布计划,等添加了新的功能之后他们就能把黑粉转为真爱粉了。他们是怎么从数百万的 tweet 中发现这些微弱的声音的呢?答案就是他们使用了机器学习。在过去几年中,通过机器学习监听社交媒体已成为标准的运营程序。   下一步? 处理机器学习算法是个很棘手的事情。正常的算法都是可预测的,我们可以透过现象看本质,理解它们是如何工作的。在某种程度上,机器学习更像人类。作为用户,我们有时候想不通纽约时报为什么会推送那些奇怪的广告,也不明白亚马逊为什么会推荐那些滑稽的书籍。实际上,纽约时报和亚马逊不能像人脑一样明白那些特定的结果,例如我们知道为什么晚餐选泰国菜,然而它们却不知道。   如果十年前你步入了机器学习的领域,除了谷歌和雅虎之外你可能找不到工作。而今天,机器学习无所不在。数据比起以往更为普遍,也更易获取。例如 Microsoft Azure ML 和 IBM Watson 的新产品降低了先进机器学习算法的准备成本和持续成本。   大众文化中的机器学习主要集中在人工智能的私人助手和自动驾驶汽车上,不过几乎你打开的每一个网站背后都有机器学习的支持,大公司投资机器学习并非因为它的流行或者先进性,而是机器学习能给他们带来可观的投资回报,这也是创新不断产生的原因。
    观点
    2016年03月31日
  • 观点
    亚马逊、微软、谷歌的云之争未果,而国内云计算市场的竞争更复杂 摘要: 云计算已经成了互联网公司们争奇斗艳的新舞台,国外的亚马逊、谷歌、微软等已经深耕多年,国内的阿里、腾讯、百度、网易等也纷纷踏足于此。 3月份对云计算来说是个大日子,亚马逊发布了云计算的第一个十年回顾,谷歌迎来了苹果、迪士尼等大客户,微软也拿出了“云计算第一,Windows第二”的态度,新一轮的竞争似乎已经到来。 从Salesforce提出“云计算”的概念开始,就吸引了不少有梦想的创业者,也吸引了IBM、戴尔、惠普等老牌科技巨头。可从目前来看,云计算已经成了互联网公司们争奇斗艳的新舞台,国外的亚马逊、谷歌、微软等已经深耕多年,国内的阿里、腾讯、百度、网易等也纷纷踏足于此。 参考美国云计算市场的现状,国内云计算领域的参与者大概可以分为五股力量,具体我们先来看下面的表格。 不难发现,几乎国内所有的云计算玩家都可以和美国云计算的先驱们对号入座。相比而言,美国云计算的市场要更加成熟,而国内还处于云计算的启蒙期。比如说亚马逊等在云计算领域的布局和规模要远大于国内互联网厂商, 谷歌、微软等在云计算领域的布局开始呈现出差异化的态势。不过,阿里云在不久前高调喊话亚马逊,试图为自己贴上“中美云计算竞争”的标签。那么,亚马逊、谷歌、微软等国际互联网巨头的云计算之争,对国内云计算市场而言又将有怎样的启示? 从2015年云计算的销售额来看,AWS的成绩是79亿美元,微软斩获了11亿美元销售额,而谷歌的云平台只拿到了不超过5亿美元的销售额,似乎呈现出了“一超多强”的局面。其实自2006年杰夫•贝索斯成立了云计算部门开始,AWS就开始成为全球云计算市场的龙头,但在亚马逊开创了云计算服务后,竞争对手便相继出现。 微软在2010年推出了Azure,从自家擅长的PaaS服务入手,随后在IaaS市场向AWS发起冲击,且从市场调研Gartner显示的数据来看,Azure的增长速度要高于亚马逊AWS。 同样的还有谷歌,2008年的时候,谷歌就推出了PaaS服务App Engine,以帮助开发者更好的开发应用。2013年,谷歌将App Engine重新命名为Cloud Platform,并涉足IaaS服务,尽管发展速度不及亚马逊和微软,依然赢得了可口可乐、百思买等大企业客户的青睐。 诸如此类的还有IBM、甲骨文、惠普等。虽然亚马逊在市场份额上表现出了一家独大的姿态,可从云计算的走势来看,未来的格局很可能是“多极化”。 云计算“超大规模”的趋势 从硬件上来说,衡量一个云计算服务强大与否的典型标准就是数据中心的数量。 去年11月份,亚马逊宣布将在韩国开设全球第12个云计算数据中心,不久之后又有消息透露亚马逊在印度孟买建立了5个数据中心,此外还有在俄亥俄地区建立的数据中心尚未公布。一般来说,最小的数据中心也有超过5万台的服务器,虽然亚马逊没有给出具体的服务器数量,有人猜测其数量可能在280万到560万之间。 微软在数据中心的建设上甚至可以用“挥金如土”来形容,据悉微软已花费超过150亿美元的资金来建设新的数据中心,在AWS进入印度的同时,微软也在孟买、普纳、金奈购买了3个云计算数据中心,追赶亚马逊的意图十分明显。 对于谷歌来说,凭借搜索引擎业务,已经在全球各地建立了近40个数据中心,从最新的消息来看,未来几个月内谷歌将在美国俄勒冈州和日本设立数据中心。VMware联合创始人格林加入谷歌后,计划在12-18个月的时间内,再增加10座数据中心。 如今云计算的市场规模在200亿美元左右,面对数万亿的企业级市场,云计算还只是冰山一角,这或许是亚马逊、微软、谷歌等在数据中心扩建上不遗余力的原因所在,也意味着AWS终将结束一家独大的局面。 企业的多向性选择 据CRN报道,苹果最近和Google签署了一项4-6亿美元的协议,用以购买Google的云服务GCP,而在此之前苹果一直是AWS最重要的客户之一。当然,苹果转投谷歌的怀抱并不意味着谷歌的云服务已经超越AWS,却直指云计算的三个现实问题。 一方面,价格仍是决定云计算受宠与否的重要因素,据传谷歌和AWS同等性能的产品在价格上要较竞争对手便宜15.7%-41.7%。另一方面,云计算的技术门槛并不是很大,谷歌和微软等跟进者在硬件设施不输于亚马逊的时候,云服务质量已经足以赶超AWS,至少亚马逊在云服务市场深耕多年,并没有用技术和服务打造出一道护城河。另外,很多企业处于竞争和稳定性的考虑,往往选择多家的云服务,比如苹果的云服务已经托管给了AWS、Azure和谷歌三家,未来或许会有更多的企业选择这一策略。 新巨头的快速成长 苹果在放弃AWS时,还干了另一件事那就是自建数据中心,同样的还有Dropbox。在AWS庆祝其第十周年纪念日的第二天,Dropbox发表了一篇博客称他们将撤离亚马逊云服务,自建私有云。虽然Dropbox的“逃离”并不意味着AWS服务质量的不足,却也为云计算服务商带来了另一难题:中小企业早起依靠云服务迅速成长,最后却自立门户,甚至成为竞争对手。 据Dropbox称,AWS约95%的新产品和新服务都是客户需求反馈的结果。仅在2015年,Dropbox就为AWS产品组合新增了722项新的功能和服务。Dropbox的举动在一定程度上预示了Facebook在云计算市场的黑马地位,相比于创业公司,这些潜在的互联网巨头们早已是云计算的资深用户,相关技术业已成熟,更重要的是他们还拥有足够的资金,可以快速弥补硬件设施上的不足。 除此之外还有IBM、甲骨文、戴尔等对云计算蓄谋已久的公司。当这类企业也瞄向云计算的时候,将进一步刺激“多极化”的竞争态势。 回到国内来看,阿里云在市场份额上仍然占有优势,百度、腾讯等跟进者也在积极布局云计算。或许阿里云在IaaS领域的成绩,让后来者难以在短期内与之匹敌,但谷歌和微软对AWS的战略思维值得国内云计算公司借鉴。一是加大在数据中心、人员储备等基础设施上的投入,二是在吸引中小企业开发者的同时,通过价格吸引更多的大型企业用户。而百度和腾讯也正是这么做的,尽管在投入上还和微软、谷歌们有不小的差距。 另外,国内云计算服务商不约而同的提供将云计算“打包”的解决方案,比如说阿里云在面向企业提供弹性计算、数据库、CDN加速等服务的同时,推出了不少行业解决方案,类如电商解决方案、O2O解决方案、游戏解决方案等等,将IaaS基础服务进行打包,提供IT资源和互联网运维服务,同时也在打包销售自家的生物识别技术、用户资源等等,类似“拎包入住”的思路。 而百度云、腾讯云等也在提供同样的服务,网易、金山、乐视等也在各自擅长的领域提供类似的解决方案,比如网易推出的SaaS云客服产品七鱼、乐视的视频云服务。服务模式上的高度重合,在服务能力、稳定性、品牌背书的同时,国内云计算领域或将效仿手机厂商的竞争策略,即削减价格,承诺功能,并提供更多可自由转换的服务。 除此之外,相比于Facebook的蓄势待发,网易、乐视等有同样背景的互联网企业已经开始发力云计算,借助内部创业等形式将技术盈余打造成专业的云计算服务,在资金、技术、品牌上较于云计算创业者有着不小的优势,未来将成为云计算领域不可忽视的一股力量。而Ucloud、青云等也在云计算的红利下,完成了C轮以上的融资,凭借创始人的背景和资金实力,也拿到了云计算的入场券。这类企业或将成为国内云计算市场的变数。 总的来说,和美国云计算市场相比,国内在技术和规模上还有差距,但竞争情况要比国外更加复杂。AWS等纷纷在中国和亚洲其他国家建立数据中心,并积极向中国企业和创业者提供相关的云计算服务。再加上阿里、腾讯、百度等依靠投资收购等形式形成了自己的生态圈,国内云计算市场“多极化”的竞争趋势要更加明显。(本文首发钛媒体) 作者:Alter,来源:钛媒体
    观点
    2016年03月29日
  • 观点
    刘东畅:你是如何被“HR大数据”忽悠的 终于决定写这个话题的时候,我心里不禁在想,到最后,这种为大家消除阴影面积的事情,还不是得靠我出马。   从去年开始,“HR大数据”这个话题似乎越来越火,从顾问公司,到业界各种专家,还是HR从业人员,不管懂还是不懂,都喜欢拿着大数据三个字说事,看多了之后,我的感觉是,“卧槽,你们还真敢说啊”。   毕竟大数据(英文名称big data,又称逼格太大),这个概念,在业界是有清晰的定义的,你不能拿个简单的数据分析就往上去套,都不知道你套的是哪根鸡毛,什么拿离职率也当成是大数据来呈现,要是更牛逼点,估计搞个邮件自动回复都能叫阿法狗了。   简直是凤姐用美图秀秀一秒钟变身空姐的即视感。   所以,澄清”HR大数据“这件事情的历史性重任,就顺理成章地落在了东畅君身上(故意装作无视周围鄙夷的目光~)。东畅君的难题是,作为一个灵活的胖子,要如何灵巧地避开诸如Hadoop、Spark、R语言这些很诗意却让大家很容易失意的词,又要甩出柔软的身段将这个由于本身很难又被各种解读导致大家一头雾水的概念娓娓道来,请大家多给一点信心和掌声!   其实呢,要说清楚HR大数据这件事情也并不难,难的是选择好角度。比如现在谈HR大数据的文章清一色都是在谈“HR大数据是什么”,且不管讲得对不对,大家总之是听了一堆觉得云里雾里,完全是大学老师说要给你划重点,结果划了满满一书的绝望感(满满都是回忆~),结果学完出来两眼一抹黑很容易又被忽悠了。所以,与其谈大数据是什么,我们不如先来谈谈HR大数据不是什么。   误区之一:把人力资源数据化就是大数据   在众多误区之中,这应该是大家最常见到的一个。实际上人力资源数据化并不是什么新鲜事了,随便找一个专业的HR或者HR顾问公司就能拿到许多可以评估人力资源工作的指标,除了开始提到的离职率,还有出勤率、招聘周期、组织氛围、敬业度等等,这些结构化数据的存在可以让大家在过去很好地评估人力资源的工作,因此被大家奉为圭臬。   可是问题来了,这些东西到底有什么意义呢?企业关心的是我现在和未来能不能赚更多钱,有逼格一点的说法叫价值创造是不是更高,所以老板总觉得很郁闷,一方面看你们每天玩数据玩得不亦乐乎,但要真是对HR问起一些问题,比如我要销售额翻一倍究竟该花多少钱招多少人啊,什么样的人才和干部最适合我们组织啊,你搞了这套激励体系以后到底我组织绩效增加了多少啊,HR立刻两眼一抹黑,掉过头开始骂老板土包子,不会用“专业的眼光”来看待HR。   可问题是,你在大排档吃烤鱼的时候,你还是只会看烤鱼好不好吃,价钱贵不贵,吃完以后有没有拉肚子,你也不会吃饱了没事用天然气利用率、烤鱼各部位烧烤停留率(这是什么鬼,好吧我乱编的)来衡量大排档的老板对吧。 而对于老板来说,他如果能通过观察每个食客的回头率、停留时间、点菜的偏好,乃至于统计他们吃鱼的姿势、吧嗒嘴的声音、在大众点评上的评语、在朋友圈发的照片、住所的位置、乃至第二天吃饭的菜单(你没看错,这些都是数据,又叫做非结构化数据),经过分析就能知道哪些要素在什么组合之下是和食客的吃饭频次和买单额度具有较大相关性的,于是我可以据此对我的食材、佐料、服务流程、摆盘乃至店面装修等要素进行适当的调整和优化,并可以据此预测出我调整以后我每个月可以多赚多少钱,多少时间大众点评的评分可以上五星。   这就是大数据,看着很不切实际吗?要知道当年Netflix就是怎么拍出来一部火爆全球的《纸牌屋》的,他们通过对自己3300万用户的行为进行分析,知道了大家喜欢看什么样的电影电视,在什么时候会暂停、回放、快进,喜欢搜索什么关键词等等,最后发现用户很喜欢 Fincher(社交网络、七宗罪的导演),也知道 Spacey 主演的片子表现都不错,还知道英剧版的《纸牌屋》很受欢迎,三者的交集表明,值得在这件事上赌一把。   由此可见,HR想凭离职率和出勤率这类数据的统计就做到这个层次?还太嫩了点。   所以简单的人力资源数据化,哪怕是这个数据因为有十几万人显得很“大”,那也不能算大数据,也并没有什么卵用,只不过是老生常谈,而你不幸知道的太少了,而已。   误区之二:大数据距离企业太远,HR应该先把基本的数据分析做好   这也是HR经常容易被忽悠的一点,因为基本上你只要去找一个人说我要做大数据咨询,对方立刻会开始谆谆告诫说我们还是先做HR数据分析的咨询吧,因为你看现在业界没几个公司做成了HR大数据的,都不成熟,你看看你基本的数据都没有标准化规范化,简单的数据分析仪表盘都没有实现,就想做大数据,这是空中楼阁。   大数据分析真的要以“基本的数据分析”为基础吗?还真不是,因为两者的思考方式完全不一样。   传统的HR数据分析是“体检型”的,就是说我一定要先按模块定义出这么一堆数据出来,然后我看看各个指标对不对,就好像你去医院买了个体检套餐,里面要做什么项目都写得清清楚楚的,你一样一样做完以后交表等结果,然后医生那里有每样数据的正常范围是什么,所以会告诉你血脂高了视力弱了脊椎弯曲了(加班狗的悲哀……)。所以每样数据必须非常精确,差了一点就会判断错误。然后拿到结果你会发现其实绝大多数检查我根本不用做嘛,结果还是要花这么多钱好坑爹,可是医院会说这又没有剧透,我不一样一样检查完我怎么知道你正不正常呢。   而大数据分析是“治病型”的,就是我觉得我最近经常咳嗽而且咽喉痛,一位正常的医生不会让我去做骨髓穿刺,而是会按一些和我症状相符的可疑病症来筛选检查手段,比如张嘴说啊然后查血、拍片,最后根据数据反映的情况说我很大概率上应该是咽喉炎,然后根据治疗咽喉炎的经验让我去打点滴做雾化吃药,三天之后我的病好了。在这个场景里,理论上我不需要所有检查结果都精确指向我是咽喉炎,只需要排除掉其它可能性,大概率地判断我应该是咽喉炎就可以了。   当然你可能会说,体检的时候就能根据不正常的数据发现问题然后去找医生治病啊,这点是没错,可是你敢说我不体检就不能发现我身体不正常了吗?你敢说我体检了一切正常以后我的身体就没有任何问题吗?我又不傻。   比如Google在发现大家对冗长的面试流程怨声载道以后,就通过大数据分析发现,面试平均只要超过3.6次,边际效用就会大大降低,而面试效率和候选人的体验也会大大降低,所以性价比最高的方法是让面试次数缩短到四次以内,这样他好我也好,全家人都开心。   像这种问题,靠“体检”怎么能发现呢?那可真是宝宝心里苦,可宝宝不会说啊。   误区之三:找个咨询顾问就能搞懂大数据了   其实如果掌握了上面两个误区,你应该就能明白,如今某些专家和顾问根本就不懂什么是HR大数据,更从来没有实践过HR大数据,他们只是拿着数据分析的工具来挂羊头卖狗肉的,是莆田系医院的好基友,顾问界的塔利班。   大数据和以往的HR咨询产品是完全不同的,与其说大数据给HR带来的是一种工具上的提升,毋宁说是一场思维上的变革。在这场变革中,HR既要能够脱离已有的框架和工具,用更全面的视角去看到以往从未关注到的变量,又要从心理学、组织行为学、管理学的层面更深入地把握个体和组织,从而观察到真正的问题,触及更深刻的本质,提出更科学的假设,更要对技术和数学有深刻的洞察,了解技术和数学可以帮助我实现什么,如何实现(而这些都恰好是某些习惯于卖现成产品和报告的顾问所欠缺的,再加上实践经验的缺乏,这也是为什么如今某些顾问都嘴上各种说大数据,却极力避免做大数据项目的原因)。   在完成思维变革的HR的眼中,实现HR大数据,其实只有三个步骤,第一,假设,第二,验证,第三,应用。特别简单,你说似不似! 那个,如果大家姿势水平高到可以和东畅君谈笑风生的话,应该会反应过来,这就是如今在科研和学术界已经被广泛接受的实证思路,只不过在应用层面,要注意更加从企业实际情况出发。 所以我说,HR大数据剥离掉技术层面的唬人的外皮,其实一点也不复杂,只不过HR们以前的心思都花在了去揣摩领导和套用模板上,而忽视了对事实和真相的追求,在反人类的道路上走得越来越远。所以在HR大数据时代,HR只不过是在回归本质,只有在这条路上,才是和Google、Facebook这些HR大数据的标杆越走越近了。   不过,如果说同时整合这些经验、理论和技术的人实在是凤毛麟角,也可以退而求其次,要么我可以精通其中一样,要么我能理解这几种人的思维,将这几种人整合在一起,并敢于去不断推动HR大数据的落地实践,为业务和组织呈现出真正的价值。   HR大数据的确为HR打开了崭新的篇章,更可以让HR的地位提升到前所未有的高度,是HR的阿波罗登月,是历史的转捩点,是撬动地球的杠杆。   可是,你得先会玩啊……   好的,总之谢谢大家观赏东畅君装了这么久的X,那个,如果有什么不完善和不周到的,你倒是来拍我呀。   来自公众号:蜜蜂派    作者:刘东畅
    观点
    2016年03月28日
  • 观点
    崭露头角的SaaS云客服,未来可期但难点也不少 就在移动浪潮铺天盖地席卷了C端市场后,企业级软件市场也从传统PC时代装机卖软件模式过渡到SaaS模式。最近几年,中国SaaS市场以30%的年复合增长率保持着高速增长,企业级SaaS服务的风口正在积聚力量,快速渗透企业办公服务所涉及的市场、销售、客服、沟通、财务、采购、HR等各个层面。   作为其中垂直细分市场,SaaS客服也已全面打开,但当巨头涌入行业竞争加剧进入短刀相拼时期,决胜力量又是什么?   我国SaaS智能客服市场的发展除了人力成本的上升、移动互联网技术的普及和移动社交场景的涌现以及自然语言处理与机器学习技术的进步外,更多的是由特殊的时期和国内环境共同影响带来的机会。   风向正好,SaaS客服迎来崭露头角的机会 首先,企业客服市场潜力被释放。客服一直是企业工作中不可或缺的组成部分,易观预测到2017年,中国SaaS客服市场交易规模将增长至680亿元人民币,这一方面是因为企业基数大,根据工商总局统计的数据显示,截止2015年底,国内注册有25万家大型企业、中型企业350万家、小型企业150万家以及微型企业1500万家,他们对客服的需求旺盛而迫切。   另一方面是因为客服工作变得越来越重要。一份来自Zendesk的统计报告显示:78%的受访者将客户服务列为影响供应商信誉的第一要素;62%的B2B和42%的B2C用户在享受到好的客户体验后会购买更多的产品;66%的B2B和52%的B2C用户在遭遇糟糕的客户服务互动后会停止购买产品;88%的人在购买决策时受到网络评论的影响......在市场竞争白热化的态势下,企业销售的不再单单是产品,用户更加在意与产品配套的客户服务。   其次,国外巨头挤不进来。这一是因为国家有明确的政策监管,SaaS业务需要IDC托管服务,也就是国外企业要想在中国境内从事类电信服务,必须在国内有商业存在,且占股不得超过51%。二是由于企业客户对用户访问和使用速度要求极高,这就要求服务器会能在本地部署,但Zendesk等创业型企业并无财力支撑服务器在中国落地,从而给国内企业留足了时间和空间。   最后,企业级市场需要更好的客服系统。当前客服行业一部分是传统电话客服软件,此类模式容易引起客服人员听说易疲劳,工作强度大,流失率高,工作效率低,客户体验差,客服投诉率高,也增加了企业人工成本。一部分是网页在线客服,虽然客服成本明显降低,但基于WEB的在线客服无法记录访客信息,无法找回客户,无法将服务流程中的发货、物流信息及时传递给客户,而且语音方式无法支持复杂业务,不利做统计分析、数据挖掘。   同时随着社交媒体的快速发展,客户服务渠道呈多样性碎片化,这就要求企业客服能支持如电话、网页,微信、QQ、APP等多种渠道的接入,再加上智能手机的普及和用户习惯的养成,员工人手一部智能手机,让手机替代PC实现企业管理和信息化成为可能,以及传统企业无法享用传统昂贵的软件解决方案。   在需求中进化,SaaS客服列队成三大阵营 第一派:智能机器人客服,如2014年京东推出的JIMI、2015年阿里推出的“小蜜”、网易系的七鱼云客服和云问等,它们依托最新深度学习技术,采用智能语义分析技术打造,拥有更好的语义理解能力,可以处理更口语化的问法,并且具有自主学习能力。   第二派: IM转移到APP客服,如:环信、容联、极光IM等。他们主要区别于电话的同步沟通模式,因为接打电话时客服人员很难再完成其他任务。而APP客服模式则是异步沟通模式,客服人员可以同步地去完成其他任务,有利于在移动互联网环境下提高工作效率且符合消费者的碎片化操作习惯。   第三派:全渠道整合客服系统,如云软IMCC、Udesk、逸创云客服等。他们将微信、微博、邮件、电话、移动APP、Web、即时通讯(IM)等多渠道优化整合,客服人员只需在一个平台上就能处理所有渠道的问题。2015年5月,逸创云客服获得由唯猎资本领投的1500万人民币和金蝶战略投资的1000万人民币A轮融资。云软则首创以即时通讯消息为主要入口的SAAS客服平台。   未来可期,但难点又在哪 随着更多新晋品牌的闯入和巨头的掺和,SaaS客服市场势必会在经历一段残酷厮杀随后进入寡头时代,那洗牌之前,整个行业的难点在哪,致胜高地又在哪?决胜之战,其实考验的就是这些能力。   一、人与企业的连接能力,也是社交力的比拼 未来社交将链接一切,人与人,人与企业,而且移动客服是即时通讯的衍生品,也是销售渠道的一个节点,每一个节点都会聚集到一些用户,产生兴趣,扎堆聊天,在交互连接中实现价值。所以SaaS客服就不再仅仅是冰冷机械的代码及程序,而是在考验着人与企业沟通能力、企业贴合用户需求的能力。   二、个性化的定制能力,也是技术沉淀的较量 如今企业客户对特定领域相关应用的需要日益增多,因为就像“世上没有两片完全相同的叶子”一样,任何一个行业、任意一类领域,不同的企业情况和需求对会不一样,通用的应用软件只能解决大部分问题,但那些细小的差异性需求能否满足又往往决定着胜负。所以这就要求SaaS客服应用能适应千变万化的行业化定制需求,能为企业提供开放的接口以及个性化定制,企业用户可根据自己的特点和需求进行自定义设置系统模块。   三、数据准确性与客服风控的能力,也是对用户需求的理解能力 目前出于数据安全性、业务连续性方面的考虑,部分大型企业不愿意使用SaaS服务。企业客户和个人客户最大的差别之一也是对安全的要求更高,这不仅牵涉到客户信息有无泄漏,也直接影响到客户对企业的信任以及企业自身的财务、信息安全。   曾经有人总结了企业SaaS选型中的五大安全问题:云计算中的身份验证并不成熟;云标准很薄弱;保密;访问所有区域增加便利性,但同时也带来风险;你并不总是知道你的数据的位置;上诉项同样适用于SaaS客服市场。SaaS客服平台要时刻提防不安全协议、基于Web的应用缺陷以及易损或不安全的证书等威胁的发生。尽管安全性与客服风控的能力说不上是加分项,一旦发生问题,就一定会给自己减分,甚至跌入万丈深渊,难以翻身。   而且目前客服中心慢慢由企业成本中心向盈利中心转变,承担起更多的营销、销售职责。这就要求SaaS客服平台对大数据处理技术以及对用户真实需求的理解能力需要上升到一定层次,能实现对客户信息数据和交易数据的分析和统计,预测并完成客户关系维护,二次销售,这无疑又加大了对数据准确性与客服风控能力的考验。   四、移动化与智能化水平的考验 如今客服场景越来越多样化,这也使得企业客服面临三大挑战:复杂多变的网络通讯稳定性、海量高并发的长连接即时消息以及平衡云端服务合理投入与高品质性能的投入产出比。SaaS客服平台若要在竞争中胜出就必须能颠覆传统客服的服务模式适用这种变化,实现真正的移动化,在保证复杂网络稳定性及海量高并发长连接还能节省使用者的建设和维护成本。   而且,好的客服往往让你感觉很专业,这就要求SaaS客服平台能提供强大的系统支持,如知识库、帮助中心或自助服务中心和数据统计分析功能等,利用关键搜索、人工智能等功能实现精准理解用户问题并匹配最佳答案,并做到快速自动回复。也就是把客户结构化和非结构化的数据进行大数据分析,反向为用户服务。同时还能把重复或干扰的问题挡在客服前面,提升客服效率。这看起来是极端的企业客户需求,却是对SaaS客服平台的基本考验。   未来SaaS客服平台还可能要对客服管理数据化,完全不止于客服,而是朝着更强的综合特征发展,最终实现以客户为中心的应用一体化。​   总之,目前SaaS客服市场是一个巨大的增量市场,用户的客服需求开始由目的型客服需求逐渐向场景型客服需求发展,未来将大有可为,但市场份额逐渐会向领先的厂商集中,客服企业逐渐呈现出平台化趋势,行业洗牌在即,大批以销售安装型软件的传统中小型软件厂商将逐步被迫退出市场,具有先发优势并能攻克以上难题的平台将获得更多发展机会,胜与败都只有一次机会。   本文系作者 曾响铃 来源:钛媒体
    观点
    2016年03月28日